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Abstract

Vehicle detectors (VDs) are usually distributed in a road network to detect macroscopic traffic situations. These detectors provide
global information such as vehicle flows, average speed, and road occupancy. Given that the collected statistic data are difficult for
citizens to interpret, we visualize the data by providing users with realistic traffic videos. To achieve this aim, our system collects
the surveillance videos and VD data that represent the traffic situation of a position. It then builds the connection between these two
types of data. Considering the distribution of VDs is much denser than that of surveillance cameras, for those road segments with
a VD but without a surveillance camera, one can utilize our system to synthesize videos for visually depicting the traffic situations
over there. That is, we estimate vehicle flows from a video and apply the regression model to build the mapping between the flows
and VD data. After that, given by a VD dataset, our system retrieves videos that match the VD data and seamlessly composes them

to synthesize a traffic video. The evaluations and the experimental results demonstrate the feasibility of our system.
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1. Introduction

Vehicle detectors are usually distributed in-road to acquire
spatiotemporal traffic statistic. The detectors record the number
and the average speed of vehicles that pass within a time span.
These data are important for city planners and traffic controllers
[1] because the data depict overview and details of traffic situa-
tions over time. However, interpreting traffic statistic demands
expertise and is not suitable for general populations. For ex-
ample, the same driving speed in a countryside and an urban
city could have very different experience because of light and
heavy traffic densities. Providing users with a number of ve-
hicles that pass is also unintuitive because it depends on the
number of lanes on the road. Moreover, a light traffic flow may
indicate few vehicles on the road or a serious traffic jam, which
easily induces misleading. Accordingly, providing an interface
for general users to realize traffic situations is essential.

Since transmitting videos captured from road surveillance
cameras consumes expensive load, simulation techniques are
presented for traffic visualization. The methods estimate ve-
locity and density fields over the road network, followed by
applying an agent-based traffic simulator to create 3D anima-
tions. They enjoy the visualization from various viewpoints
and even allow users to observe traffic from a driver’s perspec-
tive. However, a simulator cannot always realize the real traffic
flows because driving behaviors are often different in countries
and regions (Figure 1), not to mention other conditions such
as weather, rush hours, and holidays. To overcome this prob-
lem, we present an example-based system that visualizes traffic
situations by synthesizing road surveillance videos.

Our goal is to visualize statistic VD data using real world
materials. Specifically, we find a road segment where VD and
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surveillance camera are both available and extract the relations
between them. For the place with a VD but without cameras,
we synthesize a streaming video by composing the video clips
in our database to visualize its traffic situations over time. The
main advantage of this framework is generality. While a simu-
lation technique is insufficient to create an animation that satis-
fies all driving behaviors, our system does not have this problem
because they are already provided by road surveillance videos.
Note that this framework also consumes light data transmission
load because example videos are collected in advance. Only
statistic VD data are transmitted when the traffic flows of a road
segment are visualized.

The problems of traffic visualization in our framework are
video retrieval and seamless composition. Considering the traf-
fic situation of a video is unclear, to obtain the information, we
seed particles on the video and track their motions. The num-
ber and speed of these particles that go outside the video co-
ordinate or gather at the vanish point are recorded. After that,
we compute a regression model to map the VD data and the
particle flows so as to retrieve proper videos for composition
when a macroscopic traffic statistic of another place is given.
To prevent artifacts of video transition, we overlap consecutive
videos by a number of frames and compute a surface that passes
through pixels with the least distortion. Specifically, pixels on
this surface should have small color variations and zero mo-
tions to avoid discontinuity artifacts and suddenly appearing or
disappearing vehicles. We also apply the Poisson blending to
smooth the difference of illumination conditions in videos for
achieving high visual quality.

Our method synthesizes a streaming video to visualize the
traffic situations of a place over time. This example-based
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framework can realize the traffic flows consistent with the
sparse VD data at different regions. The main advantage of
this framework is generality, which is able to visualize differ-
ent traffic situations derived from driving behaviors, weathers,
etc. We show the experimental results in Figures 6, 7, and in
the accompanying video to demonstrate the feasibility of our
technique.

2. Related work

Traffic visualization. Visualizing traffic information is es-
sential to city planners and traffic controllers. Many on-line
services such as SigAlert and Google Maps depict the condi-
tions of a traffic network by colorization. The abstracted visual
means look clean and neat but lack details for understanding
dynamic vehicle flows. Therefore, Walton et al. [2] projected
live traffic videos onto maps to provide such information. How-
ever, the method consumes heavy transmission load when too
many traffic videos are displayed at a time. Another approach to
achieve the aim is traffic simulation [3, 4, 5,6, 7, 8, 9, 10]. The
methods first estimate the full traffic state based on the sparse
VD sensing data, followed by simulating the dynamics of all in-
dividual vehicles to create animations. These simulation tech-
niques enjoy various viewpoints when visualizing traffic situa-
tions. But they are insufficient to simulate all kinds of vehicle
kinematics and dynamics due to unknown driving behaviors in
different regions. As a result, we attempt to visualize traffic sit-
uations by composing road surveillance videos. This example-
based approach achieves more accurate visualization because
various vehicle kinematics and dynamics are already provided
by road surveillance videos.

Video textures. Video textures [11, 12] are commonly used
to generate an infinite length video based on a finite video clip.
The technique changes the order of video frames that are un-
noticeable to viewers and plays the video forever. Consider-
ing that two video frames with very similar content is difficult
to obtain, to prevent discontinuity artifacts, Kwatra et al. [13]
overlapped a number of frames and computed a surface to tran-
sit one video to another seamlessly. Besides the videos with
a fixed viewpoint, Agarwala et al. [14] captured videos using
a panning camera and synthesized panoramic video textures to
enhance visual experience. Later, Couture et al. [15] extended
the panoramic video textures to a stereo version. Our stream-
ing traffic video synthesis is inspired by these works. However,
all previous methods consider local color gradients during com-
position. Foreground objects with large motions may suddenly
appear or disappear when videos are composed by these meth-
ods.

Poisson blending. Many image and video editing techniques
apply Poisson blending to smooth boundary artifacts when vi-
sual media are composed. This operation performs in the gra-
dient field of an image and has attracted significant attention in
research works [16, 17, 18, 19]. Our system also applies this
operation to smooth discontinuity artifacts when transiting one
video to another. Given that Poisson blending requires solving
a large linear system, which consumes expensive computational

Figure 1: Left and right show traffic jams occur at different regions. Left: all
vehicles are in lane and no drivers attempt to violate traffic rules. Right: vehi-
cles cross lanes wantonly and make the traffic even worse. Simulation methods
are difficult to reconstruct all types of traffic flows.

cost, there were also techniques presented to improve its perfor-
mance [20, 21, 22, 23].

3. Algorithm

Our goal is to visualize traffic statistic using videos cap-
tured by road surveillance cameras. To achieve the aim, the
first step is to build the relations between traffic statistic and
videos. We search for places where VD and surveillance cam-
era are both available, and then compute a regression model
to map the detected number of vehicles and average speed to
the particle flows in a video. Specifically, our system cuts a
streaming road surveillance video into short clips, with each
clip containing one minute, because each VD returns a traffic
statistic every one minute. Because of different natures of traf-
fic statistic and videos, we extract vehicle flows from the video
and train a regression model to link these two data. This ob-
jective is achieved by computing optical flows from each video,
which roughly represent the traffic flows because surveillance
cameras have fixed viewpoints and most moving objects can be
considered vehicles. Accordingly, given by traffic statistic at
another place, our system is able to retrieve proper videos from
the database and compose them together for traffic situation vi-
sualization.

Our system composes one-minute videos to a streaming
video for visualizing the traffic situation of a place with a VD
but without a surveillance camera. To prevent discontinuity ar-
tifacts, we reserve a number of frames at the two ends of each
one-minute video. We then overlap the reserved frames and de-
termine the smoothest surface to transit one video to another.
The pixels on this surface have not only similar colors but also
small motions, which can reduce discontinuity artifacts and pre-
vent suddenly appearing or missing vehicles. Considering the
illumination conditions could be different, the hard transition of
videos often results in discontinuity artifacts, we smooth pixel
colors to achieve a visually pleasing result.

3.1. Data acquisition

We obtain traffic statistic and road surveillance videos from
Taiwan Area National Freeway Bureau. The traffic statistic de-
picts the passed number of large and small vehicles and the av-
erage speed of these vehicles within each minute. The road
surveillance videos show the traffic situation of an area, where



Figure 2: Vehicles may go outside the video coordinate or gather at a vanish
point, depends on the flow direction.

its location and the captured time are attached. Although the
original surveillance videos are of high quality, our obtained
versions are of low resolution (352 x 198) and low frame rates
(7 fps) due to some privacy issues. But the presented technique
could be directly used for proceeding high quality surveillance
videos if necessary.

3.2. Data mapping

To visualize the traffic statistic of a road segment, our system
has to retrieve proper videos from the database for composition.
Given that the videos in our database are attached with traffic
statistic detected by a VD, when the traffic statistic of another
place is obtained, the simplest way to retrieve proper videos is
measuring the similarity of two traffic statistic. However, cur-
rent VD systems are not perfect and the obtained traffic data
are easily disturbed by noise. This naive matching totally relies
on VD statistic and may retrieve inadequate videos. Another
way to achieve the aim could be counting vehicles by apply-
ing object detections, but the methods are slow and often miss
vehicles that are not in the training dataset. Instead, we com-
pute traffic flows and build a regression model to establish the
relations between traffic statistic and videos.

We compute optical flows that represent pixel motions in ad-
jacent video frames. To obtain vehicle flows, we uniformly seed
particles on a video, where the initial distance is set to 10 pix-
els, and track their motions. Since particles on a vehicle would
move, we re-seed particles whenever the region has no particles
nearby (i.e., 10 pixels in our implementation) as video frames
are updated. Observing that vehicle flows in a video may have
different directions (Figure 2), when these particles move, they
would eventually go either outside the video coordinate or to-
ward the vanish point. We let users manually specify the di-
rection that match the VD because this information can only
be obtained by checking the camera orientation. Our system
then counts the number of these particles and computes their
average speed to represent the traffic situation. Apparently, de-
tecting particles that go outside the video coordinate is straight-
forward. We point out that obtaining particles gathering at the
vanish point is also simple. In our implementation, we find a
circular region where particles in it are very slow or even still
but have fast motions in the beginning to achieve the aim.

We represent a video with its corresponding traffic statistic
using a high dimensional point v = (f;, f,, ny, n¢, s), where f
and f, indicate the average speed and the number of particles
that go outside the video or gather at the vanish point, n; and n,
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Figure 3: Suppose vehicles are moving down (y coordinate) as video frames are
updated (t coordinate). We show their motions using blue and green arrows, re-
spectively. The potential transition seams, which are rendered in orange, would
partition the video into left and right segments. As illustrated, this transition
seam should avoid passing through arrows to maintain vehicles appearing in
only one segment. Otherwise, the (green) vehicle would suddenly appear at the
point where the seam and the arrow intersect.

are the numbers of small and large vehicles, respectively, and s
is the average vehicle speed detected by a VD. We observe that
[ is proportional to s; and f, is proportional to ny and n,. While
representing a pair of surveillance video and traffic statistic in a
high dimensional space, we can determine a hypersurface that
approximates the distribution of v, which is formulated as

ulfs2 + uzf,,2 + u3nf + u4n% + u552

+M6fs +u7fn + ugng + ugny + U195 + U = 0. (1)

By letting u; = 1 and instituting the variables (f;, f,, 1y, ne,
s) obtained from the database, we solve for the coeflicients u;
to u;; in a least squares sense. As mentioned earlier that VDs
are not perfect, after we obtain the hypersurface, we compute
the distance of each high dimensional point to the surface. The
points where their distances larger than the standard deviation
are removed. We apply this regression model and the remaining
videos to synthesize traffic situations of a place that has a VD
but no cameras. That is, given by a VD statistic (ng, ng, s), we
retrieve a video with the flow (f;, f,,), where the composed high
dimensional point is closest to the hypersurface.

3.3. Traffic video synthesis

We compose video clips to a streaming video for visualizing
the traffic situation of a road segment. To reduce discontinuity
artifacts, we overlap the consecutive videos by 60 frames and
retrieve a surface with the least distortion to transit one video to
another. We then smooth pixel colors on the surface to further
improve visual quality. Here we show the composition of two
video clips. One can always consider the previously composed
result as the first clip and the new video as the second clip to
generate a streaming video.

3.3.1. Seamless surface for transition

We compute the surface in the overlapping frames for tran-
siting one video to another. This surface should pass through
the region with small color gradients to reduce discontinuity ar-
tifacts. Moreover, it has to avoid cutting through vehicle flows
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Figure 4: Our system overlaps consecutive videos ©; and €, and computes
the surface with the least distortion for seamless transition. The two boundaries
of the overlapping frames are 92| and 9, respectively.

to prevent suddenly appearing or missing vehicles. We show a
2D example in Figure 3 for illustration. In other words, the pix-
els on this surface should have similar colors and zero motions.
Denote by E the set of edges indicating pixel adjacency, by Q;
and Q, the overlapping pixels at the first and the second videos,
respectively. Our goal is to determine a label x = {1,2} for
each pixel p in the overlapping area by minimizing an objective
function:

D Dap)+ D) Dipip)+ Y Dulpip))- 0
i (i, jeE {i.jJeE
Specifically,

w ifp;edQ Ax;=2

or p; € 0 Ax; =1 3)
0  otherwise

Dy(pi) =

is a data term to constrain pixels at the first boundary 0€; be-
longing to the first video and at the second boundary €, be-
longing to the second video, respectively.

Dy(pispj) = If} = f21+1f} = 7] )

is a smoothness term to achieve seamless video transition,
where f! is the color of pixel p! € Q. In other words, the
surface should pass through the region that has the least color
variation. Finally,

w if|vi|>yorlv; >y

D\(pi, p)) :{ 0 otherwise ©)

is a constraint to prevent the surface passing through vehicles,
where v; is the magnitude of optical flow at p;. This constraint
is important even though the region has small color variation
because humans are very sensitive to dynamic and meaningful
objects in a video. We set w = 10000 and y = 2 in our imple-
mentation. Note that y # 0 is due to the non-perfect detected
optical flows. Clearly, the minimization of Equation 2 is a label-
ing problem. We apply the graph cut algorithm [24] to obtain
the solution.

3.3.2. Illumination smoothing

Visual artifacts are inevitable when videos captured under
different illumination conditions are composed together. To
handle this problem, we search for the surveillance videos that
have similar physical time to make sure their illuminations are
not significantly different. We also estimate the illumination

Figure 5: Left and right show different compositions of a frame. Pixels may
come from Q; or €. The Poisson blending can handle both situations because
only color gradients in Q;, Q,, and colors on 9Q are considered.

difference between consecutive clips and blend the luminance
of each pixel smoothly to ease the artifacts. Specifically, we
compute a background image G by averaging the overlapping
frames and compare G to video frames in ; and €, to obtain
the illumination changes. The formal expression is given:

li= 1 D G- F)e= 1 3 (G- F, ©

1 FieQ, 2 FieQ,
where F is a video frame, (G—F), is a scaler function that sums
the difference of pixel luminance smaller than the standard de-
viation o, and A is used for normalization. We point out that
our system discards the pixels with large luminance deviations
in Equation 6 because they often represent foreground objects.
Observing that hard transition of videos often induce dis-
continuity artifacts, even though they are sufficiently small, we
further apply Poisson blending to smooth the boundary. Be-
cause the illumination condition of a video usually is stable,
this smoothing process can be achieved in each video frame in-
dividually to save computational cost. As illustrated in Figure
5, Q) and €, are the first and the second videos, respectively,
and 0Q is the surface boundary in a frame. Our goal is to up-
date pixel colors in Q,, where their color gradients are possibly
retained and the constrained pixels on 9Q are untouched. That

is, for each pixel p; € €,, we minimize

INfi= > fi = D Vi ™

JEN; JEN;
where N; and f; denote the neighbors and color of p;, respec-

tively, and v;; = f; — fj is the color gradient. Note that we
minimize the objective function

Nifi= D, fi= DL fi+ v ®)

JENAD, JENiAIQ jeN;

for pixels where their neighbors are on 9C2 to handle the bound-
ary constraint, and f is a known variable obtained from Q;. We
formulate the above equations into a linear system and solve
for the pixel colors in €, in a least squares sense. Although Q2
could have various shapes, as illustrated in Figure 5, the Pois-
son blending works well in all cases. We refer readers to [16]
for details.

4. Results and discussions

We have implemented the presented approach using C and
run the program on a desktop PC with Core i7 3.0 GHz CPU



Retrieval by measuring VD statistics Retrieval by using our regression model
VD statistic | Ground truth | Deviation to the query | VD statistic Ground truth | Deviation to the query
# large|# small| # large|# small| # large # small |# large|# small|# large|# small| # large # small
19 78 14 71 6 9 13 68 21 82 1 2
18 81 17 123 3 43 24 39 21 84 1 4
18 81 8 139 12 59 26 44 12 80 8 0
17 79 15 115 5 35 15 41 17 79 3 1
17 79 17 122 3 42 15 41 11 84 9 4
20 75 13 99 7 19 23 61 17 83 3 3
16 79 4 106 16 26 13 40 24 79 4 1
20 74 17 89 3 9 23 41 13 90 7 10
20 74 24 107 4 27 20 38 16 84 4 4
18 76 15 98 5 18 16 86 11 90 9 10

Table 1: We retrieve traffic videos that have 20 large vehicles and 80 small vehicles passing through a place by measuring VD statistic and by using our regression
model, respectively. Ten one-minute videos that best fit this query are listed. We also manually count the numbers of vehicles in the videos and denote the results
as ground truth. clearly, the videos retrieved by using our method can better depict real traffic situations because the true numbers of large and small vehicles are

closer to the query.

Figure 6: Left and right show the comparison without and with the flow con-
straint when transiting one video to another. Our system retains the persistence
of each vehicle whenever it appears in the video to prevent visual artifacts.

and GeForce GTX 550 GPU. The GPU based optical flow
[25, 26] method is used to extract vehicle flows in a road
surveillance video. We also applied the graph cut library [24]
to compute the surface that can seamlessly transit one video to
another. Finally, we apply the conjugate gradient method to
solve the Poisson blending problem. This process is efficient
because the hard transited frames can be set as initial guess in
the system to speed up the convergence. Generally, extracting
flows in each video frame takes about 0.04 seconds; computing
the surface to transit video clips takes 39 seconds; and smooth-
ing transition boundaries in each frame takes about 0.2 seconds.
Although the database of collected road surveillance videos is
large, we point out that retrieving videos for composition is effi-
cient. The performance is not surprising because all videos can
be precomputed and only f; and f,, that indicate average speed
and number of particles will be used in this step.

Figure 7: Left and right show the comparison without and with Poisson blend-
ing. (Left) Discontinuity artifacts occur when videos with different illumina-
tions are composed, as highlighted by the red rectangle. (Right) The artifacts
are removed by our smoothing.

4.1. Evaluations

We evaluate whether the retrieved videos well depict traf-
fic flows. Suppose the goal is visualize the traffic situation, in
which 20 large vehicles and 80 small vehicles passed a road
segment in one minute. We retrieve ten videos that best fit this
query by using our method and by measuring VD statistic, re-
spectively. We then manually count the true numbers of large
and small vehicles in the videos. Table 1 shows the results. As
mentioned earlier, current VDs are not perfect and the detected
traffic data often contain noise. Retrieving videos simply by
measuring VD statistic potentially obtain improper results. In
contrast, the videos retrieved by using our method can better de-
pict real traffic situations because the true numbers of vehicles
are more consistent and closer to the query. These results point
out that our framework is robust against noise in VD statistic,
thanks to the consideration of optical flows in traffic videos.

In addition to retrieving videos that can depict traffic situa-
tions, we tested our composition method on a variety of traffic
videos. The chosen videos involve different traffic situations
and weathers. Figure 6 and our accompanying video show the
comparison of video transition with and without the preserva-
tion of traffic flows (Equation 5). The result in the left indi-
cates that the surface passes through the bus because the overall



Figure 8: Left and right show different illumination conditions of a road seg-
ment. Simply smoothing the artifacts by blending luminance is not sufficient.

cost is small, although the color difference between the bus and
the road is noticeable. Hence, buses suddenly appear/disappear
in the composed video and the visual artifacts occur. By giv-
ing large penalties to the pixels with traffic flows, we success-
fully prevent this temporal artifact, as shown in Figure 6 right.
We also show the comparison with and without the illumina-
tion smoothing in Figure 7 to demonstrate how the discontinu-
ity artifacts are removed in our system. We recommend users
to watch the results shown in our accompanying video because
dynamic vehicle flows are difficult to appreciate in still images.

4.2. Qualitative comparisons to simulation methods

Both simulation techniques and our method aim to visualize
macroscopic VD data by reconstructing traffic flows. These two
approaches work on different directions and have totally differ-
ent natures. The main advantage of our approach is an example
based visualization, where driving behaviors that affected by
road conditions, weather, and law-abiding are recorded by the
videos in the database. Accordingly, our composed streaming
video is able to reflect these factors during visualization. How-
ever, its main disadvantage is a fixed and unchanged viewpoint.
Users can only get insight to traffic flows by watching a video
instead of interacting with the flows. The simulation methods
are opposite to ours. They can handle traffic-related phenomena
only with assumptions. But the methods allow users to exam-
ine data from different perspectives. Users can observe traffic
flows from a bird’s eye view and from a driver’s view to obtain
global and local details, respectively. We therefore claim that
our system is not presented to replace the simulation methods
but to provide another strategy for traffic visualization. These
two approaches are complementary and should work together
to realize traffic situations of macroscopic VD data.

4.3. Limitations

Our system applies road surveillance videos of one place to
depict the traffic situations of another place. A problem of this
framework is of different background scene in the composed
video, which may induce perceptual misleading. The simplest
way to solve this problem is informing users that the video
is used for visualization and asking them to neglect the back-
ground issue. Another approach is to take a picture of the place,
in which the traffic situations over there will be visualized, and
replace the background with content provided by the picture
[27]. The achievement of this objective should consider the
consistent of viewpoints and seamless blending. We plan to im-
prove this example based traffic situation visualization system
in the near future.

Another limitation of our system is large illumination
changes (Figure 8). Although we have striven to smooth pixel
luminance, transiting videos that have very different shadow di-
rections still produces unusual results. Our current strategy to
prevent this problem is retrieving videos with similar physical
time. However, it demands a large amount of videos stored in
the database to realize various kinds of traffic situations. Ad-
vanced illumination process could be used to reduce the size of
a database.

5. Conclusions

We have presented a system to visualize traffic situations by
composing videos in a database. Given by macroscopic VD
data that depicts the vehicles passing a road segment, our sys-
tem retrieves proper videos that match the data for composition.
It then reduces visual artifacts by computing a surface for seam-
less video transition and by solving a Poisson equation for illu-
mination smoothing. Although the visualized traffic flows are
of a fixed viewpoint, by collecting road surveillance videos with
different conditions, our visualization can fit various driving be-
haviors that a simulation method cannot achieve. Accordingly,
it can cooperate with simulation techniques for users to better
understand traffic situations.
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