1. Construct a Turing machine that accepts the complement of the language $L = L(aaa^*b^*)$. Assume that $\Sigma\{a,b\}$.

Answer.

A TM M that accepts L can be constructed as follows.

2. What language is accepted by the Turing machine whose transaction graph is in the figure below?

Answer.

$L = ab^* + bb^*a$.
3. Construct Turing machine that will accept the language $L = \{ww : w \in \{a,b\}^+\}$.

Answer.

The hard part here is that we don’t know where the middle of the string is. So we don’t know where the boundary between the first occurrence of w ends and the second begins. We can break this problem into three subroutines, which will be executed in order:

(a) Find the middle and mark it. If there’s a lone character in the middle (i.e., the length of the input string isn’t even), then reject immediately.

(b) Bounce back and forth between the beginning of the first w and the beginning of the second, marking off characters if they match and rejecting if they don’t.

(c) If we get to the end of the w’s and everything has matched, accept.

A TM M that accepts L can be constructed as follows.

4. Design a Turing machine to compute the function $f(x, y) = x + 2y$ for x and y positive integers represented in unary.

Answer.

A TM M that accepts L can be constructed as follows:

Idea

- x and y are unary-represented
- Use string copier to copy y as $2y$
- Compute $x + 2y$
5. Using adders, subtracters, comparers, copiers, or multipliers, draw block diagrams for Turing machines that compute the function $f(n) = 2^n$. for all positive integers n.

Answer.

![Block Diagram](image)

6. Provide a 'high-level' description for Turing machines that accept the language $L = \{a^n b^{m^2} : n = m^2, m \geq 1\}$ on \{a,b\}. For each problem, define a set of appropriate macroinstructions that you feel are reasonably easy to implement. Then use them for the solution.

Answer.

The idea is to remove n bs as we see an a on the tape.

(a) Make sure the input string is in $L(aa^*bb^*)$. (This can be done by checking the input string. We are expecting to see some as follow by some bs. If there is an a after bs, reject.)

(b) Mark the first unmarked a. If there is no more as, go to (e).

(c) Scan the tape and remove n bs. A possible solution is by zigzagging. That is, mark an a and delete a b. Repeat n times by giving as n different marks. If there are not enough bs to remove ($m < n^2$), then halt and reject.

(d) Go back to the most-left side of the head and repeat from (b).

(e) If the first symbol after marked as is b, halt and reject ($m > n^2$). If the first symbol is blank, then halt and accept.
7. Suppose we make the requirement that a Turing machine can halt only in a final state, that is, we ask that \(\delta(q, a) \) be defined for all pairs \((q, a) \) with \(a \in \Gamma \) and \(q \in F \). Does this restrict the power of the Turing machine?

Answer.

The following shows that the halt-in-final Turing machine and standard Turing machine are equivalent.

- Since a halt-in-final Turing machine is clearly an extension of the standard Turing machine, it is obvious that any standard Turing machine can be simulated by some halt-in-final Turing machine.
- A standard Turing machine \(\hat{M} \) can simulate the computation of a halt-in-final Turing machine by using the following arrangement.
 - Create a new trap-state \(q_{\text{trap}} \) with transitions to itself for all symbol \(a \in \Gamma \), i.e., \(\delta(q_{\text{trap}}, a) = (q_{\text{trap}}, a, L \text{ or } R) \).
 - For each non-final state \(q \), we define a new transition that bring each unused symbol \(a \), which causes halt in state \(q \), to the trap-state \(q_{\text{trap}} \).

Therefore, the modification in the halt-in-final Turing machine does not restrict the power of the Turing machine. \(\square \)

8. Write program for nondeterministic Turing machine that accepts the language \(L = \{ww^Rw : w \in \{a, b\}^+\} \). In each case, explain if and how nondeterminism simplifies the task.

Answer.

In the beginning, non-deterministic steps should be used to separate input \(w \) into three segments.

Input: \(w \), surrounded by blanks.

Assume that \(w \) starts with \(a \).

Beginning:

(a) Mark \(a \) as \(X \) and enter \(q_a \). (\(X \) is for first segment \(w_1 \), \(q_a \) will move forward to mark the end of the second segment non-deterministically.)

(b) \(q_a \) moves forward, mark an \(a \) as \(Y \) and enters \(q_{a1} \). (non-deterministically determine the end of the second segment \(w_2 \), that is, \(\delta(q_a, a) = \{(q_a, a, R), (q_{a1}, Y, R)\} \)

(c) \(\delta(q_{a1}, a) = (Z, L) \) (\(Z \) is for the third segment \(w_3 \)).

For example, \(w = aabbaaaab \), after the above steps: \(w = aabbaaaab \rightarrow XabbaYZab \).

Remarks:

1) \(q_a \) may find a wrong end for the second segment such that \(aabbaaaab \rightarrow XabbYZaab \). This does not matter since TM will not enter a final state in the end if \(XabbYZaab \) is taken.

The rest are deterministic steps:
(d) Find the first symbol σ after X and mark it as X
(e) Move forward to find the same σ right before Y and mark it as Y
(f) Move forward to find the same σ right after Z and mark it as Z.

Remarks:

1) If TM cannot find σ in step (d), move forward to find \Box by passing Y and Z.
 If encountering symbols other than Y and Z, halt and enter a non-final state. If successfully reaching blank, halt and enter a final state.
2) If any of steps (e) and (f) cannot be satisfied, halt and enter a non-final state.

9. Give the encoding, using the suggested method, for the Turing machine with

$$
\delta(q_1,a_1) = (q_1,a_1,R), \\
\delta(q_1,a_2) = (q_3,a_1,L), \\
\delta(q_3,a_1) = (q_2,a_2,L).
$$

Answer.

\[
\begin{array}{cccc}
101010111 & 0010110110101 & 001110101101101 \\
\text{First transition} & \text{Second transition} & \text{Third transition}
\end{array}
\]

10. Sketch a Turing machine program that enumerates the set $\{0,1\}^+$ in proper order.

Answer.

Idea:
- Length 1: 0, 1
- Length 2: 00, 01, 10, 11
- Length 3: 000, 001, 010, 011, 100, 101, 110, 111
- ...

Sketch:

(a) Initial string: 0.
(b) Copy the last string.
(c) Find the rightmost 0, change it to 1 and then change all the 1’s, on the right of the found 0, to 0’s. If there is no any 0 in the string change all 1’s to 0’s and add a 0 on the leftmost of the string.
(d) Repeat the step (a).