1. Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than four.

Answer.

- The strings with length 1: \{λbλ\} = \{b\};
- The strings with length 2: \{abλ, bbλ, λba\} = \{ab, bb, ba\};
- The strings with length 3: \{(aa)bλ, (ab)bλ, (ba)bλ, (bb)bλ, (a)b(a), (b)b(a), λb(ab)\} = \{aab, abb, bab, bbb, aba, bba, bab\}.

2. Find a regular expression for the set \{a^n b^m : (n + m) is odd\}.

Answer.

There are two cases:

- \(n\) is even and \(m\) is odd: \((aa)^*b(bb)^*\);
- \(n\) is odd and \(m\) is even: \(a(aa)^*(bb)^*\).

Thus, a regular expression for the set \{a^n b^m : (n + m) is odd\} is \((aa)^*b(bb)^* + a(aa)^*(bb)^*\). □

3. Give regular expression for the complement of \(L_1 = \{a^n b^m, n \geq 3, m \leq 4\}\).

Answer.

\(\overline{L_1} = \{a^n b^m, n \geq 3, m \leq 4\} = \{a^n b^m, n < 3\} \cup \{a^n b^m, m > 4\}\).

The regular expression for \(\{a^n b^m, n < 3\}\) is \(b^* + ab^* + aab^*\) and the regular expression for \(\{a^n b^m, m > 4\}\) is \(a^*b\overline{bbbb}b^*\).

Thus, the regular expression for \(\overline{L_1}\) is \((b^* + ab^* + aab^*) + a^*b\overline{bbbb}b^*\). □

4. Find a regular expression for \(L = \{w \in \{0, 1\}^* : w\) has exactly one pair of consecutive zeros\}.

Answer.

The cases for two occurrences of 00 are 000 and 0011*00.

Thus, the regular expression for \(L\) is \(00 + 0011^*00\). □

5. Find a regular expression over \(\{0, 1\}\) for the all strings not ending in 10.

Answer.

The cases for the desired regular expressions are \((0+1)^*00\), \((0+1)^*01\), and \((0+1)^*11\).

The regular expression over \(\{0, 1\}\) for the all strings not ending in 10 is \((0+1)^*(00 + 01 + 11)\). □
6. Determine whether or not the following claim is true for all regular expressions \(r_1 \) and \(r_2 \). The symbol \(\equiv \) stands for equivalence regular expressions in the sense that both expressions denote the same language.

(a) \((r_1^*)^* \equiv r_1^*\).
(b) \(r_1^*(r_1 + r_2)^* \equiv (r_1 + r_2)^*\).
(c) \((r_1 + r_2)^* \equiv (r_1r_2)^*\).
(d) \((r_1r_2)^* \equiv r_1^*r_2^*\).

Answer.

(a) Yes. \(\therefore L((r_1^*)^*) = (L(r_1^*))^* = ((L(r_1))^*)^* = (L(r_1))^* = L(r_1^*) \).
(b) Yes. \(\therefore \) Since \(L(r_1^*(r_1 + r_2)^*) \subseteq L((r_1 + r_2)^*(r_1 + r_2)^*) = L((r_1 + r_2)^*) \) and \(L((r_1 + r_2)^*) = L(\lambda(r_1 + r_2)^*) \subseteq L(r_1^*(r_1 + r_2)^*) \), they are equivalent.
(c) No. \(\therefore (r_1 + r_2)^* = (\lambda + r_1 + r_2 + r_1r_2 + \ldots)^* \) and \((r_1r_2)^* = (\lambda + r_1r_2 + r_1r_2r_1r_2 + \ldots)^* \). Therefore, \((r_1r_2)^* \not\subseteq (r_1 + r_2)^*\).
(d) No. \(\therefore (r_1r_2)^* = (\lambda + r_1r_2 + r_1r_2r_1r_2 + \ldots)^* \) and \(r_1^*r_2^* = (\lambda + r_1 + r_2 + r_1r_1 + \ldots, r_1^nr_2^m)^* \).

7. Use the construction in Theorem 3.1 to find an nfa that accepts the language \(L(ab^*aa + bba^*ab) \).

Answer.

By Theorem 3.1, the automata for \(L(a) \) is

![Diagram](1)

By Theorem 3.1, the automata for \(L(a^*) \) is

![Diagram](2)

The automata for \(L(b) \) and \(L(b^*) \) can be constructed in a similar way.

Then by Theorem 3.1, the automata for \(L(ab^*aa) \) is

![Diagram](3)
Then by Theorem 3.1, the automata for $L(bba^*ab)$ is

Thus, by Theorem 3.1, the automata for $L(ab^*aa + bba^*ab)$ is

8. Find an nfa that accepts the language $L((abab)^* + (aaa^* + b)^*)$.

Answer.

Similar to the steps in Question 7, an nfa that accepts the language $L((abab)^* + (aaa^* + b)^*)$ is as follows.
9. Find the minimal DFA that accepts $L(abb)^* \cup L(a^*bb^*)$.

Answer.

The following is an NFA that accepts $L(abb)^* \cup L(a^*bb^*)$.

The following is the corresponding DFA that accepts $L(abb)^* \cup L(a^*bb^*)$.

Using Theorem 2.4 the corresponding minimized DFA is as follows. As shown in the table, in the first iteration (marked in red), we mark distinguishable states. For example, q_1 and q_0 are distinguishable since q_1 is final and q_0 is non-final state.

Next, we iterate over the remaining parts and check if they are distinguishable or not. For example, $\delta(q_2, a) = q_4 \notin F, \delta(q_0, a) = q_2 \notin F$ and $\delta(q_2, b) = q_3 \in F, \delta(q_0, b) = q_1 \in F$, hence so far they are indistinguishable. On the other hand, since $\delta(q_6, a) = q_9 \notin F, \delta(q_0, a) = q_2 \notin F$ and $\delta(q_6, b) = q_7 \notin F, \delta(q_0, b) = q_1 \in F$, q_0 and q_6 are distinguishable and marked with orange.

In the third iteration (marked in yellow), For all pairs (p, q) and $a \in \Sigma$, compute $\delta(p, a) = p_a$ and $\delta(q, a) = q_a$. If (p_a, q_a) is distinguishable, then mark (p, q) as distinguishable. For example, (q_2, q_7) are distinguishable since $(\delta(q_2, a) = q_4, \delta(q_7, a) = q_9)$ and (q_5, q_9) are distinguishable.
Finally, since all of the states are distinguishable, our designed DFA is already minimized.

10. What language is accepted by the following automata.

Answer. We first convert the given NFA to a complete GTG in the left-hand-side figure. Next, we reduce the state \(q_1 \) to obtain a two states one (Right-hand-side). Finally, we obtain a regular expression: \((a^*((a^*+b+c)+(a(a+b)^*(a+b)))+(a+b^*))\)

11. Find regular expression for the language accepted by the following automata.

Answer. We first convert the given NFA to a complete GTG in the left-hand-side figure. Next, we reduce the state \(q_1 \) to obtain a two states one (Right-hand-side). Finally, we obtain a regular expression: \((a^*(b+ba)((a+b^*)+ba)^*)\)
12. Write a regular expression for the set of all C real numbers.

Answer.
Let \(d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 \).
A regular expression for the set of all C real numbers is
\[
\mathcal{r} = (0_+^+ ' + ^+ ' - ^+ ' + \lambda)(d_+^* (d_+^* \lambda)^+ \lambda)
\]

13. Construct a dfa that accepts the language generated by the grammar

\[
S \rightarrow abSA, \\
A \rightarrow baB, \\
B \rightarrow aA|bb.
\]

The dfa is constructed as follows, where \(q_x \) corresponds to variable \(x, x \in \{S, A, B\} \).

Answer.

14. Construct right- and left-linear grammars for the language \(L = \{a^n b^m : n \geq 3, m \geq 2\} \).

Answer.
The right-grammar \(G_R = (S, A, B, \{a, b\}, S, P) \) with productions \(S \rightarrow aaaaA, A \rightarrow aA|bB, B \rightarrow bB|b \).
The left-grammar \(G_L = (S, A, B, \{a, b\}, S, P) \) with productions \(S \rightarrow Bbb, B \rightarrow Bb|Aaa, A \rightarrow Aa|a \).
15. Use the construction suggested by the above exercises to construct a left-linear grammar for the NFA below.

![NFA Diagram]

Answer.

Notice that the language of the NFA is $L(M) = \{(10)^n : n \geq 0\}$. Therefore, the left-grammar $G_L = (S, \{0, 1\}, S, P)$ with productions $S \rightarrow \lambda | S10$.

16. Use the construction in Theorem 4.1 to find NFA that accept $L = ((ab)^*a^*) \cap L(baa^*)$.

Answer.

Let $L_1 = L((ab)^*a^*)$ and $L_2 = L(baa^*)$. We begin by designing a NFA for M_1 and M_2 as follows. Next, we simultaneously run $M_1 \times M_2$ to find an NFA $L_1 \cap L_2$. Since there is no common transition from the initial states of M_1 and M_2, $L = \emptyset$. That is, $L_1 = L((ab)^*a^*)$ and $L_2 = L(baa^*)$ have no intersection.

17. The symmetric difference of two sets S_1 and S_2 is defined as $S_1 \oplus S_2 = \{x : x \in S_1 \text{ or } x \in S_2, \text{ but } x \text{ is not in both } S_1 \text{ and } S_2\}$.

Show that the family of regular languages is closed under symmetric difference.

Answer.

From the definition of symmetric difference of two sets, we have that $S_1 \oplus S_2 = (S_1 \cap \overline{S_2}) \cup (S_2 \cap \overline{S_1})$. Because of the closure of regular languages under intersection (\cap), complementation (\overline{L}), and union (\cup), the family of regular languages is closed under symmetric difference.

18. The tail of a language is defined as the set of all suffices of its strings, that is,

$$tail(L) = \{y : xy \in L \text{ for some } x \in \Sigma^*\}$$

Show that if L is regular, so is $tail(L)$.

Answer.

1-7
Assume that dfa $M = (Q, \Sigma, \delta, q_0, F)$ accepts L and every state q in Q is reachable from q_0.

For every state q, there is string x with $\delta^*(q_0, x) = q$ (string x takes M from q_0 to q). Therefore, any string that takes M from q to a final state is in $tail(L)$ since xy is accepted with $\delta^*(q_0, xy) = \delta^*(\delta^*(q_0, x), y) \in F$. Thus, we add a new initial state q'_0 and \lambda-transitions from q'_0 to every state in M to form a new nfa M' so that $L(M') = tail(L)$, where M' is formally constructed as: $M'=(Q \cup \{q'_0\}, \Sigma, \delta', q'_0, F)$, $\delta'(q'_0, \lambda) = \{ q: q \in Q \}$ and $\delta'(q, \sigma) = \delta(q, \sigma) \forall q \in Q$ and $\sigma \in \Sigma$.

19. For a string $a_1a_2\cdots a_n$ define the operation $shift$ as

$shift(a_1a_2\cdots a_n) = a_2\cdots a_na_1$.

From this, we can define the operation on a language as

$shift(L) = \{ v : v = shift(w) \text{ for some } w \in L \}$.

Show that the regularity is preserved under the $shift$ operation.

Answer.

Assume that the language L is given in DFA $M = (Q, \Sigma, \delta, q_0, F)$. We construct an NFA $N = (Q', \Sigma, \delta', q_s, \{q_f\})$ satisfies that $shift(L) = L(N)$ with $Q' = Q \times \Sigma \cup \{q_s, q_f\}$ and δ' as follows. (Note that $Q \times \Sigma = \{ [q, \sigma] : q \in Q, \sigma \in \Sigma \}$, where $[q, \sigma]$ is a state for the first symbol of the string in L to be σ.)

- $\delta'(q_s, \lambda) = \{ [\delta(q_0, \sigma), \sigma] : \sigma \in \Sigma \}$ (here we guess the first symbol to be σ, we will verify this guess "in the end" when the last symbol appears);
- $\delta'([q, \sigma], \sigma') = \{ [\delta(q, \sigma'), \sigma] \}, \forall q \in Q, \forall \sigma, \sigma' \in \Sigma$;
- Add q_f to $\delta'([r, \sigma], \sigma), \forall r \in F, \forall \sigma \in \Sigma$;

For example, the following is a DFA M such that $L = L(M)$. The construction of the

NFA N satisfies that $shift(L) = L(N)$ is shown as follows.

Thus, the regularity is preserved under the $shift$ operation.

20. Show that the following language is not regular. $L = \{a^nb^kc^n : n \geq 0, k \geq n \}$.

Answer.

Let m be the constant in the pumping lemma. We choose $w = a^mb^mc^n \in L$, $|w| \geq m$. For all possible x, y, z with $w = xyz$, $|xy| \leq m$, $|y| \geq 1$, there are following cases:
• Case 1: \(x = a^{m-r}, y = a^r, z = b^m, r \geq 1 \). We let \(i = 0 \). \(xy^iz = a^{m-r}b^m \notin L \), because \(m - r \neq m \).

• Case 2: no other cases.

Thus, \(L \) is not regular. \(\square \)

21. Show that the following language is not regular. \(L = \{ w : n_a(w) = n_b(w) \} \). Is \(L^* \) regular?

Answer.

Let \(m \) be the constant in the pumping lemma. We choose \(w = a^mb^m \in L, |w| \geq m \).

For all possible \(x, y, z \) with \(w = xyz, |xy| \leq m, |y| \geq 1 \), there are following cases:

• Case 1: \(x = a^{m-r}, y = a^r, z = b^m, r \geq 1 \). We let \(i = 0 \). \(xy^iz = a^{m-r}b^m \notin L \), because \(m - r \neq m \).

• Case 2: no other cases.

Thus, \(L \) is not regular. \(L^* \) is non-regular since \(L^* = L \), which is shown to be non-regular. \(\square \)

22. Determine whether or not the following language on \(\Sigma = \{a\} \) is regular

\[L = \{ a^n : n = 2^k \text{ for some } k \geq 0 \} \]

Answer.

Let \(m \) be the constant in the pumping lemma. We choose \(w = a^{2^m} \in L, |w| = 2^m \geq m \).

For all possible \(x, y, z \) with \(w = xyz, |xy| \leq m, |y| \geq 1 \), there are following cases:

• Case 1: \(x = a^r, y = a^s, z = a^{2^{m-r-s}}, r + s \leq m, s \geq 1 \). We let \(i = 2 \). \(xy^2z = a^r(b^s)^2z = a^{2^m+s} \notin L \), because

\[2^m < 2^m + s \leq 2^m + m < 2^m + 2^m = 2^{m+1}, 2^m + s \neq 2^k \text{ for any } k \]

• Case 2: no other cases.
Thus, L is not regular.

23. Make a conjecture whether or not the following language is regular. Then prove your conjecture.

\[L = \{a^n b^l a^k : n > 5, l > 3, k \leq l \}. \]

Answer.

Let m be the constant in the pumping lemma. We choose $w = a^6 b^m a^m \in L$, $m > 3$, $|w| = 2m + 6 \geq m$. For all possible x, y, z with $w = xyz$, $|xy| \leq m$, $|y| \geq 1$, there are following cases:

- Case 1: $x = a^r$, $y = a^s$, $z = a^{6-r-s} b^m a^m$, $r + s \leq 6$, $s \geq 1$. Let $i = 0$, $xy^i z \notin L$ since less than 6 a’s in the beginning.

- Case 2: $x = a^6 b^r$, $y = b^s$, $z = b^{m-r-s} a^m$, $s \geq 1$. Let $i = 0$, $xy^i z = a^6 b^{m-s} a^m \notin L$ since the number of b’s is less than the number of a’s in the end.

- Case 3: y cannot contain both a’s and b’s since $xy^2 z$ is not in L.

Thus, L is not regular.

24. Let L_1 and L_2 be regular languages. Is the language $L = \{w : w \in L_1, w^R \in L_2\}$ necessarily regular?

Answer.

Yes, L is regular. $L = \{w : w \in L_1, w^R \in L_2\} = \{w : w \in L_1\} \cap \{w : w^R \in L_2\}$, i.e., $L = L_1 \cap L_2^R$.

Because of the closure of regular languages under intersection and reverse (proved by Question 14 in HW1), L is regular.

25. Is the following language regular? $L = \{uvw^Rv : u, v, w \in \{a, b\}^+\}$

Answer.

You can choose ww^R to be in the form 00 and 11. Hence, for any given string you can check to see if the middle substring is in the form of 00 and 11. Therefore, L is regular and can be expressed as $(a + b)(a + b)^*(aa + bb)(a + b)^*(a + b)$. For example, $ababa\overline{abba} \in L$.

1-10