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Abstract— Since family members have their unique features
when living in a smart home environment, user identifications
are able to achieve without any tags. In this paper, we propose
TagFree system in which users freely move in a smart home
environment and TagFree system is able to intelligently identify
family member according to sensed data. Specifically, TagFree
system consists of two phases: the training phase and the
prediction phase. In the training phase, sensed data are collected
and then, given a huge amount of sensed data, the profile
of users, including the most common sensed data (i.e., tones,
weights and location), are discovered. Once the profile of users
is built up, in the prediction phase, we propose two scoring
algorithms to generate likelihood scores according to the sensed
data given. A simulation is implemented to verify the correctness
of our proposed system and extensive experiments are conducted.
Experimental results show that our proposed TagFree is able to
achieve high accuracy of identifying family member without any
tags. Furthermore, from experimental results, we also provided
some guidelines to set some important parameters for TagFree.

Keywords : Smart home, pervasive computing, classification,
sensor networks.

I. INTRODUCTION

Recent advances in wireless and embedded technologies
have already set the stage for the deployment of smart homes.
For example, an increasing number of small and inexpensive
wireless devices (referred to as sensor nodes [1][4]) are
deployed to monitor various environmental measurements such
as temperature, humidity and moving behaviors of users. Once
collecting such data, a smart home system is able to automat-
ically offer more context-aware services for users. Example
services in a smart homes include multimedia services and
location-aware resource management [9][10]. A considerable
amount of research works elaborate the issues of determining
location information of users since location information is
an important context. The positioning techniques are roughly
classified into two categories. In the first category, users
should carry tags or RF-based devices. By exploring tags
and RF-based devices, one could easily identify the location
information of users. In the second category, sensor networks
are deployed to tracking user locations and thus users do
not need to equip with any tag or devices [12][5]. In smart
homes, the positioning technology employed needs to be
weaved into the fabric of our daily life and thus users are

Fig. 1. An example a smart home, where the alphabets denote sensor
identifications.

able to comfortably live in smart homes. In this paper, we
adopt the latter approach in that no any tags or devices are
equipped with users. By utilizing positioning techniques in
[12][5][13], location information of users could be obtained. In
our paper, location information is represented as identifications
of sensors. In addition to the location information of users,
the identification of users is a vital context as well. However,
since no tags or devices are carried by users, identifying users
is a challenge issue, which is a very problem we should
address in this paper. Though some prior works focus on
target classification and tracking problems in wireless sensor
networks [6][2], their proposed algorithms mainly deal with
the problem of tracking objects in wireless sensor networks
deployed in large fields. However, to our best knowledge,
our scenario is not the same as the prior works in [6][2] in
that the environment is focused on smart home environments.
Furthermore, identifying homogeneous objects (i.e., users) is
more challenging than heterogeneous object identifications
(i.e., identify car or human).

Consider an example profile of users in a smart home, where
the floor plan is shown in Figure 1 and profiles of users are
given in Table I. Given the profile table in Table I and the
sensed values collected from sensors, one should decide the
user identification (i.e., the user identification column in Table
II). For example in Table II, at time 7:00, from the sensed



User Weight (kg) Tone (HZ) Movement Patterns
U1 68 103 lh, sh, os, so
U2 48 338 kh, lh, oh, kho
U3 53 163 dh, lh, nh, dhn
U4 53 173 dh, fh, lh, dhf
U5 43 458 ah, dh, kh, lh

TABLE I
PROFILE OF USERS

Time Weight (kg) Tone (HZ) Location Identification
07:00 68 103 o U1

07:05 47 N/A k U2

07:05 52 164 n U3

07:10 54 N/A l U3

07:10 43 457 a U5

07:15 47 N/A k U2

TABLE II
A CLASSIFICATION PROBLEM IN A SMART HOME ENVIRONMENT.

values, we could infer that this user is U1 since some sensed
values (i.e., tone and weight) are closely satisfied the profile
of U1 in Table I. However, in reality, some sensed values are
not always collected, or cannot be collected accurately. When
a user is silent, the sensed value of tones is not collected.
Furthermore, some sensed attributes do not always true reflect
user profile due to that the change of behaviors of users
such as a heavy luggage with users. As can be seen in
Table II, at time 7:15, it is hard to identify true user due
to that not all sensed readings (i.e., tone) are measured and
the attributes of weights cannot provide any unique feature
to identify users. Compared to the attributes of weights and
tones, the location information is always available. Therefore,
one could utilize location information to distinguish users.
Location information of users at one time slot is not easy
to identify users and note that the moving behavior of users is
usually regular and follows some mobility patterns [8][7][3]
[11][14]. Therefore, one should collect a considerable amount
of location information of users to mine movement patterns
of users and these movement patterns could be viewed as one
attribute in user profiles.

In this paper, given a profile table and a set of sensed
values collected from sensor networks, we should judiciously
determine user identification. We first model this problem
as a classification problem. Due to the dynamic feature of
sensed data, we explore a probabilistic model to predict user
identifications. Explicitly, for each attribute data collected,
we will develop a corresponding probabilistic model to es-
timate the probabilistic value of classifying users according
to sensed data collected. Then, these likelihood probabilistic
values are taken into consideration when aggregating into
likelihood probabilistic values of predicting user identification
for each user in a smart home. The maximal likelihood value
is considered and the corresponding user is the identification
predicted. It is worthy mentioning that since each attribute data

has different discriminated degree and the collected frequency,
for each attribute, we assign different weight when it comes to
generating aggregated probabilistic values. In order to verify
our proposed method, we implement a simulation model and
conduct a comprehensive performance study to verify the
performance of the proposed TagFree system. Experimental
results shows that our proposed TagFree system is able to
accurately determine the identification of users in a smart
home.

The rest of the paper is organized as follows. In Section
2, some preliminaries are given. In Section 3, we develop
TagFree system in which several algorithms are proposed. Ex-
perimental results are shown in Section 4. Section 5 concludes
with this paper.

II. PRELIMINARIES

To facilitate the presentation of this paper, some preliminar-
ies are given in this section. In Section II.A, we first formulate
the problem of identifying users in a smart home environment.
Then, mining user moving patterns is presented in Section II.B.

A. Problem of Identifying Users
In this smart home, sensors are deployed to measure sensed

values such as weights, tones and locations. Through existing
positioning techniques [12][5][13], the location information of
users is determined and is represented as sensor identification.
Movement paths of users are thus viewed as a series of
sensor identifications. Furthermore, user profiles are initially
built up and those sensed attributes that are useful to identify
user identification will be included in the profile table. As
mentioned above, given a profile table and the sensed values
collected from sensor networks, we should judiciously deter-
mine the identification of users. This problem is intrinsically a
classification problem. A traditional classification problem is
that given a data record that contains a set of attributes, one
would like to assign this data record to one specific class label
predefined. Generally speaking, in order to precisely assign
class label to each data record, a traditional classification
problem would first build up prediction model according to
a given training dataset. Interesting readers could refer to
the data mining related books. Consequently, in Table II,
user identification column is viewed as a class label and
the number of class labels is equal to the number of family
members. Given a set of sensed values (referred to as a record),
one should decide the class label for this record. Similar
to traditional classification algorithms, assume that a set of
training data in which each data record is assigned to one
class label is given. Then, we need to build up one prediction
model from the training data. Without loss of generality, Table
II is used as a set of training data. From Table II, it can be
seen not all attribute values are available at all time and a
one time location information (i.e., location information at
a specific time slot) cannot provide any guide to distinguish
users. To deal with missing attribute values, one could refer to
the profile of users so as to fill the data. As mentioned before,
since user movements are usually regular, one could utilize



existing works to mine user movement patterns. Therefore,
one should view location information of users as data streams
and the location data stream is able to provide more hints to
predict user identification. Hence, in this paper, given a profile
of users and a set of attributes, including numerical attributes
and location data streams, we should precisely determine user
identifications.

B. Mining User Movement Patterns

In a smart home environment, when a user moves, the
location of the user is updated in one centralized server. The
location of a user is represented as a sensor identification. The
successive sensor identification stream seems to be endless,
and it changes very frequently in proportion to the sensed
rate. Therefore, it costs too much to store the whole sensor
identification stream and reprocess it whenever a new sensor
identification is sent in. The problem can be solved by using
a method which is capable of mining moving patterns in one
scan. In fact, mining movement pattern is modeled as a VMM
(Variable memory Markov Model) training and we adopt a
variation of a suffix tree called emission tree to maintain the
VMM model [8][7][15].

Each edge of an emission tree represents a moving record
(i.e., sensor identification) appearing in the moving path. A
tree node of an emission tree is denoted as a concatenation of
the edge labels from the node to the root. In other words, a
tree node labeled as rk...r2r1 can be reached from the traversal
path from root → r1 → r2 → ... → rk. Each tree node will
maintains the occurrence number of its label in the moving
path. Furthermore, each tree node also records the conditional
probabilities of all consecutive moving records given the node
label as the preceding segment. For example, according to
the conditional probabilities of consecutive moving records of
node A in Figure 2, it can be verified that P(A|A), P(B|A),
and P(F|A) are 0.5, 0.38 and 0.12, respectively. Consequently,
if the most recently moving record is A, by traversing the
emission tree in Figure 2, one can estimate the consecutive
movement (i.e., A) in this illustrative example.

The construction of an emission tree is briefly described
as follows. At the beginning, the emission tree has only one
root node with the counts of each moving record appearing
in the buffer so far. If the count of moving record ri is larger
than the predefined threshold (i.e., minimal support denoted
as δ), one tree node labeled as ri will be created as the child
node of the root. Similarly, tree node ri will maintain the
occurrence count of ri and the probability distribution table
is also associated with the node to record the conditional
probability of the next moving record with the prefix segment
ri. Assume that the moving records held by the buffer are
r1...rl−1. When a new moving record, rl arrives into the buffer,
those statistical information (i.e., counts and the conditional
probabilities) should be updated accordingly. In order not to
distract readers from the main theme of this paper, interested
readers are referred to [15] for the detailed procedure of
constructing an emission tree.
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Fig. 2. The resulting emission tree with some selected statistical information.

III. DESIGN OF TAGFREE SYSTEM

In this section, we first present an overview of TagFree
System and then the detailed algorithms are presented.

A. Overview of TagFree System
In TagFree System, profile information should be first built

up. Then, given a profile information and the current sensed
attributes collected, TagFree system should judiciously identify
who the family member is. Such an identification procedure is
the same as traditional classification problem. Hence, Figure
3 shows two phases in TagFree system. In the training phase,
both of the weight and tone sensed attributes are collected
and the average of weight and tone attributes are used as
features of individuals. Notice that the location of users is
viewed as a series of sensor identification that could be
viewed as a data stream). By utilizing mining techniques
in [8][7], movement patterns are discovered and each user
has his/her own emission tree. Once a profile of users is
derived, TagFree system will then be in the prediction phase.
In the prediction phase, given a set of attributes (i.e., weight,
tone and location) collected, TagFree should classify user
identification based on profile information. We model this
problem as a Bayesian-like classification problem. For each
attribute collected, we will determine the likelihood value
that indicates the possibility of inferring one family member.
The corresponding likelihood values for a family member are
aggregated into one likelihood value (referred to as aggregate
inferring score). Given a set of aggregate inferring scores,
TagFree system will select the maximal aggregate inferring
score and thus conclude the corresponding user identification.
Since some sensed attributes are numerical and users have their
unique features in these numerical attributes, we could employ
statistical techniques to decide the likelihood value for these
attributes. For location information, given a series of location
information (represented as sensor identification), we develop
algorithm SpatilScoring to decide the likelihood value. The
detailed descriptions are given in the following subsections.

B. Scoring Algorithm for Numerical Attributes
In this section, we will develop a scoring algorithm for

numerical sensed attributes. As mentioned before, each user
has his/her own unique feature. Note that in the training
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Fig. 3. A framework of TagFree system in a smart home environment.

phase, such attributes are collected. In order to facilitate the
presentation of this paper, we consider one numerical sensed
attribute (i.e., weight) as an example. Assume that wi denotes
the weight of family member i. Assume that the sensed
readings are collected for a period of time window. Therefore,
we have the definition of user behavior observed:

Definition 1. User Behavior: The user behavior
consists of a series of sensed readings within a
sliding window ∆t and is expressed as U (t) =
{S (t−∆t+ 1) , S (t−∆t+ 2) , . . . , S (t)}, where S (t) is
the sensed reading at the time t.

In order to filter out some noise readings, we should first
calculate the mean value from the sensed readings within a
sliding window. Denote wm as the mean value and wsd as a
standard deviation. Therefore, we only consider the readings
within the range [wm − θwsd, wm + θwsd], where θ is
an adjustable variable and is used to verify the reasonable
range for normal sensed readings. After filtering out the noise
readings, the new mean value, expressed by w0m, is derived.
Assume that the number of family members is n and wi is
the weight of family member i. As such, the likelihood score
of inferring family member i from the corresponding sensed
attribute (i.e., weight) is formulated as follows:

Pw
i = 1− |w

0
m − wi

wrange
|,where

wrange = max {w0m,wi|i ∈ [1, n]}-min {w0m,wi|i ∈ [1, n]}

To make sure that 0 ≤ Pw
i ≤ 1, wrange is calculated. With

larger value of Pw
i , the more likelihood that the unknown user

is family member i from the sensed weight value. Similarly,
we could determine the likelihood value for other numerical
attributes (e.g., tone).

Consider an example in Table III, where both weight and
tone attributes are numerical values and the movement of
the user is represented as sensor identifications. Also, we
demonstrate how to calculate Pw

i . First, a series of weights
(i.e., {52, 53, 52, 67, 51, 52}) is collected. Then, the mean
value wm and the standard deviation wsd of the sensed
values are 54.50 and 5.62, respectively. Assume that θ is

Time Weight (kg) Tone (HZ) Location (sensor ID)
07:20:00 52 N/A l
07:20:01 53 N/A l
07:20:02 52 N/A h
07:20:03 67 N/A f
07:20:04 51 N/A f
07:20:05 52 N/A h

TABLE III
AN EXAMPLE OF SENSED DATA IN A SMART HOME ENVIRONMENT.

User wi Pw
i

U1 68 0.2
U2 48 0.8
U3 53 0.95
U4 53 0.95
U5 43 0.55

TABLE IV
THE RESULT OF DETERMING PWi. .

set to 2. Clearly, 67 is filtered out and we could derive
the new mean w0m as 52+53+52+51+52

5 = 52. Consider
a profile table in Table I, where there are five family
members with their corresponding weights (i.e., w1 = 68,
w2 = 48, w3 = 53 , w4 = 53 and w5 = 43). It can
be verified that the wrange = max{52, 68, 48, 53, 53, 43}-
min{52, 68, 48, 53, 53, 43} = 68 − 48 = 20. Consequently,
Pw
1 = 1− |52−6820 | = 0.2. Following the same procedure, we

could have likelihood values of other users shown in Table IV.

C. Scoring Algorithm for Location Attribute
Note that family members usually have their own moving

behaviors at home. For example, parents are likely to move
from their bedroom to the living room. Therefore, one could
utilize movement patterns to infer the possible family member.
In this section, given a set of emission trees and a location
data stream, we develop algorithm SpatialScoring to derive the
likelihood value of location for each family member (denoted
as PLi for family member i). From a set of likelihood values
of all family members, we select the maximal likelihood value
and infer the unknown user is the corresponding family user
(e.g., i if PLi is maximal among a set of likelihood values in
terms of location). In the following paragraph, we demonstrate
how to derive the likelihood value of location given one
emission tree.

Since the location information is viewed as location data
streams, we could match a given location data stream with
an emission tree and determine the corresponding likelihood
value. The likelihood value is decided according to matching
between a location data stream and emission tree nodes.
Suppose that each node of an emission tree has one score
and the score of a node is set to the value of its tree level.
For example, since a root node of an emission tree is at the
level 1, the score of a root node is set to 1. The principle
of scoring of location data streams is that when the location



Movement Location stream Matching score Spatial score
b b 1 1
c bc 1+2=3 4
a bca 1+2+3=6 10
d bcad 1+2+3=6 16

TABLE V
AN EXAMPLE OF CALCULATING PL

i .

 root

a b c fd

aac a d b d

cbb

Fig. 4. An example emission tree.

data streams are matched to deep tree nodes, the more likely
that the location streams are close to the movement behavior
of the corresponding user. Thus, given location streams, we
could match location streams with an emission tree and
sum the score of tree nodes matched. The sum of the tree
nodes matched is referred to as matching score. Furthermore,
since location data streams are incoming every time when
users move, algorithm SpatialScoring will calculate and
accumulate the matching scores. The accumulated matching
score is called spatial score. Once a new location is collected,
this location will be appended as one new location stream.
The corresponding matching score will be calculated and the
spatial score will be updated. It can be seen that algorithm
SaptialScoring is able to dynamically calculate the scores
based on the incoming location data.

Consider an illustrative example in Table V, where a family
member has four movements and one example emission tree
is shown in Figure 4. In the beginning, the location of the
user is at b and then b is buffered. To determine the matching
score, one should match location streams collected with the
emission tree. From matching scenarios, we could decide
that the matching score is 1. Hence, the spatial score is
updated to 1. The next movement of this family member is
c. Therefore, a new location stream is bc. By traveling the
emission tree in Figure 4, one could derive the matching score
as (1 (matching c) +2 (matching b)=3). Consequently, spatial
score is updated as 1+3=4. Following the same procedure,
after four movements of this family member, the spatial score
is calculated as 16.

The above procedure is used to determine the spatial score
for one emission tree given a location stream. Therefore, we
could derive the spatial scores for a set of emission trees
given. Since each user will has his/her emission tree, for family
member i, we denote the spatial score of emission tree i as
SSi. As such, the likelihood score of inferring family member
i from the location attribute is formulated as follows:

Fig. 5. An example of five emission trees.

Family member Ui Spatial score PL
i

U1 14 14
14+11+14+33+14

= 0.16

U2 11 11
14+11+14+33+14

= 0.13

U3 14 14
14+11+14+33+14

= 0.16

U4 33 33
14+11+14+33+14

= 0.38

U5 14 14
14+11+14+33+14

= 0.16

TABLE VI
THE FINAL RESULT OF DETERMINING PLi .

PL
i =

SSiPn
j=1 SSj

, where n is the number of family members.

Consider our illustrative example in Table III and five
emission trees shown in Figure 5. From Table III, there are
6 movements of this family member (i.e., llhffh). Thus, we
could derive spatial scores for each emission tree and derive
their likelihood values shown in Table VI.

D. Determining User Identification
From the above two scoring algorithms, the corresponding

likelihood values are determined according to the sensed mea-
surements collected. In this paper, assume that we have two
numerical attributes (i.e., tone and weight) and one location
attribute. Hence, three likelihood values are available. To
facilitate the presentation of this paper, PT

i and PW
i are the

likelihood values of inferring family member i in terms of tone
and weight sensed data. On the other hand, PLi is the location
likelihood value of inferring family member i. Therefore, we
could derive the aggregate likelihood value of inferring family
member i as Pi = rW ∗PW

i +rT ∗PT
i +rL∗PLi , where rW , rT



User Ui rW PW
i rT PT

i rL PL
i Pi

U1 0.5 0.2 0 N/A 0.5 0.16 0.18
U2 0.5 0.8 0 N/A 0.5 0.13 0.47
U3 0.5 0.95 0 N/A 0.5 0.16 0.56
U4 0.5 0.95 0 N/A 0.5 0.38 0.67∗
U5 0.5 0.55 0 N/A 0.5 0.16 0.36

TABLE VII
THE RESULT OF DETERMING THE AGGREGATED P.

and rL are the weight values for these three sensed attributes.
These weight values are very dependent to behaviors of family
members and one experiment will be conducted to show the
impact of these weight values. Consider the example in Table
III, where both rW and rL are set to 0.5 and rT is set to zero.
Table VII shows the aggregate likelihood value for each user.
From Table VII, the maximal likelihood value is selected (i.e.,
P4) and hence we could infer that the unknown user is family
member U4.

IV. PERFORMANCE STUDY

To evaluate the proposed algorithms for TagFree, we im-
plement a simulation to model a smart home environment. In
Section IV.A, the simulation model is described. Section IV.B
is devoted to experimental results.

A. Simulation Model
In our simulation model, the floor plan of a smart home

environment is shown in Figure 1, where sensors are deployed
in the smart home and there are four family members. Then,
we have developed an object-oriented discrete-event simula-
tion environment to generate family members’ movements,
associated prediction of likely paths. Specifically, the sensor
deployment in the smart home is viewed as a graph, where
a vertex denotes a sensor and an edge between vertexes
represents that these two sensors are nearby. As mentioned
before, there are four family members and each family member
has each own movement paths. Note that in order to simulate
movement patterns of family members, we use probability
model to model user moving behaviors. Explicitly, each family
member has his/her own unique moving behavior, meaning
that this member will frequently appear or move in some
areas. For example, one family user has higher probability
in staying in the kitchen since this family member need to
cook for other family members. Furthermore, each family user
has his/her own bedroom. Consequently, given areas that one
family member usually stays, movement paths among these
areas are generated, where movement paths are shortest paths.
The movement behaviors are similar to prior works in [9][10].
Following the design issues in [9][10], each family member
has his/her own movement pattern. The number of consecutive
moving paths employed in the training phase is called the
training step (denoted by Ntrain). The number of moving
paths used in the prediction phase is called the prediction
step (denoted by Npred). As to other sensed attributes (i.e.,
tone and weight), these sensed attributes are generated at

Notation Definition
Ntrain The number movement paths in the training phase
Npred The number movement paths in the prediction phase
δ A minimum support for mining movement patterns
θ A threshold value for numerical sensing attributes
Vw Weight profile for family members
Vt Tone profile for family members

TABLE VIII
PARAMETERS USED IN THE SIMULATION MODEL.
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Fig. 6. The accuracy of TagFree with various training steps and θ.

each movement of a user. Vw (respectively, Vt) denotes the
vector with the corresponding weights values (respectively,
tone values) of family members. When a user moves to a new
location, a probability indicates whether a user will generate
tone value or not. If a user will produce some accosting
values, these values are decided according to the corresponding
value in Vt with some noise bias. On the other hand, the
sensed value for weights is always acquired and the sensed
weight is also generated based on the Vw with some noise
bias. A measurement, accuracy, is represented as the ratio of
the number of correct identifications and the total number of
identifications. Table VIII summaries the definitions used for
some primary simulation parameters.

B. Experimental Results
In this section, we conduct some experiments to evaluate

the proposed TagFree system. First, we evaluate the impact of
training steps for the prediction accuracy. Then, we examine
the impact of prediction steps needed in TagFree system.
Finally, sensitivity analysis of parameters used in TagFree is
conducted.

1) The Impact of Training Steps: As mentioned before,
in the training phase, TagFree system will collect data from
sensors. Then, these sensed data are used to mine movement
patterns and build up the tone and weight profile of family
members. In this experiments, we set Npred to 25, δ to 5,
Vw to {85, 70, 55, 40}, Vt to {120, 300, 180, 330}, rW to
0.3, rT to 0.3 and rL to 0.4. The experimental results with
the number of training steps varied are shown in Figure 6. It
can be seen in Figure 6 that with a larger number of training
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steps, the accuracy of TagFree intends to increase. This is due
to that with more sensed data available, movement patterns
are precisely determined by TagFree. Furthermore, when the
number of training steps increases, we could set a smaller
value of θ since more data are available to build up the weight
and tone profile of user. Next, we investigate the parameter of
δ for mining movement patterns of users. Other parameters
are set the same as above, except that the value of θ is set to
2. Figure 7 shows the experiential results. It can be verified
that with a larger amount of training steps, the accuracy of
TagFree tends to increase. Note that for smaller value of δ, an
emission tree could quickly generate tree nodes for movement
patterns. With a larger number of training steps, the emission
tree is able to accurately capture the movement patterns of
users, thereby increasing the accuracy of TagFree.

The above two experiments indicate that to increase the
accuracy of TagFree, one should collect a sufficient training
data by setting a larger number of training steps. Furthermore,
smaller values of θ and δ are able to increase the accuracy of
TagFree.

2) The Impact of Prediction Steps: After mining movement
patterns and building up the profile of family members, in
the prediction phase, TagFree will use a series of sensed
data collected for identification. Without loss of generality,
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we set Ntrain to 1000, δ to 5, Vw to {85,70,55,40}, Vt

to {120,300,180,330}, rW to 0.3, rT to 0.3 and rL to 0.4.
The experiments of varying the value of θ under various
numbers of prediction steps are performed. Figure 8 shows
the experimental results. It can be seen Figure 8 that as the
number of prediction steps increases, the accuracy of TagFree
is also increased. However, when the number of prediction
step is too large, the accuracy of TagFree decreases. This
is due to that with a larger number of prediction steps,
some obsolete location data are not helpful to identify users
when scoring the movement path. On the other hand, with a
smaller number of prediction steps, the location data does not
capture the moving behavior of family users, resulting in the
smaller accuracy values. Thus, the number of prediction should
judiciously be determined. The setting of θ does not have
great impacts for the accuracy of TagFree since the number
of prediction steps mainly affect the prediction accuracy of
location attributes. Therefore, we conduct experiments with
the value of δ varied. The experimental results are shown in
Figure 9. Similar to Figure 8, the number of prediction steps
should be appropriately determined. The reason is the same
as the above. It can be seen in Figure 9, with a smaller δ,
more moving behaviors are captured in emission trees, thereby
increasing the accuracy of TagFree.

3) Sensitive Analysis of TagFree: In TagFree, the values of
rW , rT and rL are important parameters. Clearly, the setting
of these parameters depends on the discrimination of each
sensed attribute. In this experiments, we model four scenarios
to investigate the impact of the discrimination of sensed
attributes for the setting of rW , rT and rL. WL (respectively,
WS) denotes a significant (respectively, low) discrimination
among weights of family members. On the other hand, TL
(respectively, TS) represents a significant (respectively, low)
discrimination among tones of family members. The profile
setting of these four scenarios is shown in Table IX. Under
the four scenarios, we set Ntrain to 1000, Npred to 20, θ to
2.

Figure 10 shows the accuracy of TagFree under different
scenarios. In Figure 10, it can be seen that the accuracy of



Scenarios Vw Vt

WL+TL {85,70,55,40} {120,300,130,190}
WL+TS {85,70,55,40} {180,270,180,160}
WS+TL {60,60,60,60} {120,300,130,190}
WS+TS {60,60,60,60} {180,270,180,160}

TABLE IX
SCENARIOS FOR ILLUSTRATING DISCREMINATIONS.
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Fig. 10. The accuracy of TagFree under different scenarios.

TagFree under the scenario of WL+TL is higher accuracy than
other scenarios. Since discriminations are enough in terms of
weights and tones, the setting of rW , rT and rL does not have
impact on the performance of TagFree. In scenario of WL+TS,
it can be seen that due to the discrimination in weights, setting
larger value for rW is able to increase the accuracy of TagFree.
On the other hand, setting larger value of rT will improve the
accuracy of TagFree under the scenario of WS+TL. Thus, once
collecting profiles of family users in the training phase, one
should further determine discriminations among these sensed
attributes so as to facilitate the setting of rW , rT and rL.

V. CONCLUSIONS

In this paper, we claimed that since family members have
their unique features when living in a smart home environment,
user identifications are able to achieve without any tags.
Hence, we proposed TagFree system in which users freely
move in a smart home environment and TagFree is able
to intelligently identify family member according to sensed
data. Specifically, TagFree system consists of two phases: the
training phase and the prediction phase. In the training phase,
sensed data are collected and then, given a huge amount of
sensed data, the profile of users, including the most common
sensed data (i.e., tones, weights and locations), is discovered.
Once the profile of users is built up, in the prediction phase,
we proposed two scoring algorithms to generate likelihood
scores according to the sensed data given. We implemented
a simulation model to verify the correctness of our proposed
system and extensive experiments are conducted. Experimental
results show that our proposed TagFree is able to achieve

high accuracy of identifying family member without any tags.
Furthermore, from experimental results, we also provided
some guidelines to set some important parameters for TagFree.
In the future, we will implement TagFree system in a real smart
home environment to demonstrate the feasibility of TagFree.
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