BiFuse: Monocular 360° Depth Estimation via Bi-Projection Fusion
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This supplementary material contains 1) detailed illustration of the idea described in Sec. 3.1. (Preliminary) of our main
manuscript, 2) more results and analysis of our fusion scheme, 3) more qualitative results in terms of the point cloud, and 4)
a video which summarizes our proposed method.

1. Preliminary

In Fig. 1 we provide the detailed illustration of the equirectangular-to-cube and cube-to-equirectangular transformations
(denoted as E2C and C2E respectively) that we mentioned in Sec. 3.1 of our main manuscript. To be specific, when doing
E2C, we need to sample pixels on equirectangular coordinate in order to acquire the corresponding texture for each face of
the cube representation. However, if we directly project from equirectangular coordinates onto the cube, we could have some
faces with incomplete pixels as these pixels cannot be mapped from the integer equirectangular coordinates. As a result, the
technique of inverse mapping is usually adopted to solve this problem: for each coordinate on the cube, we compute its
corresponding coordinate in the equirectangular system and copy the pixel value. Please note here that, if the corresponding
coordinate in the equirectangular system is with floating numbers, the interpolation is applied on its neighboring integer
coordinates to retrieve the interpolated pixel value.
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Figure 1. Illustration for the transformation presented in Equation (1) of our main manuscript. As shown on the right-hand side, given
a 3-dimensional coordinate (z,y, z) on the face of cubemap, it can be transformed into the corresponding coordinate (6, ¢) in terms of
equirectangular representation.

2. Fusion Schemes

Illustration of our fusion module. The overview of our fusion block is provided in Figure 2. First, the inputs are the
feature maps from equirectangular and cubemap branches, which are fed into their corresponding convolution layers respec-
tively. After concatenating their outputs after convolutions (denoted as h!, = H.(h.) and h!, = H.(C2E(h.)) respectively),
another convolution layer is used to infer a weighting mask M in order to balance the fusion between two branches. Finally,
we obtain the final outputs by having h. = h.+M -k, and h. = h.+E2C((1—M))-E2C(h.). In this way, the infomration
betweeen two branches can be well shared.
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Figure 2. Illustration of our fusion block. The symbol x denotes element-wise multiplication while the symbol + denotes element-wise
summation.

More results and analysis. To demonstrate that our fusion scheme is beneficial to the depth estimation, we build up
two model variants with different fusion strategies as the baselines to make comparison: 1) a fusion method proposed in
[1] via directly adding up two feature maps, and 2) simply averaging predictions from two branches. In addition to the
training/evaluation in the equirectangular coordinate (Table 6 of the main paper), we further provide comparisons in the
perspective coordinate. Table 1 shows the quantitative results evaluated on the Matterport3D dataset, and our full model with
the bi-directional fusion module is able to outperform other baselines with other fusion strategies, which validates the benefit
of our fusion scheme to improve depth estimation in 360° cameras.

Table 1. Quantitative results on the Matterport3D dataset with comparisons to different fusion strategies. Training and evaluation is based
on the cubemap coordinate system.

Different fusion \ MRE | \ MAE | \ RMSE | \ RMSE (log) | | 6§ <1.251 | 6 <1.2521 | 6 < 1.253 1

Yang et al. [1] 0.4652 | 0.2616 0.5490 0.1541 0.8661 0.9453 0.9665
Average 0.4798 | 0.2642 0.5488 0.1550 0.8630 0.9460 0.9672
Ours 0.4512 | 0.2473 0.5343 0.1518 0.8792 0.9485 0.9676

3. Qualitative Result of Point Clouds

For better visualization on the comparison between our proposed method and the baselines, here we show several quali-
tative results on four datasets (two cases each) in terms of point clouds, which are based on the depth estimation produced
by different approaches: Matterport3D in Fig. 3 and Fig. 4; PanoSUNCSG in Fig. 5 and Fig. 6; Stanford2D3D in Fig. 7
and Fig. 8; 360D in Fig. 9 and Fig. 10, respectively. Each figure has two rows, the first row shows depth predictions, while
the second row provides corresponding point clouds in bird eye view. The point cloud results clearly demonstrate that our
prediction has sharper boundary than other methods (i.e., FCRN and Omni) and are closer to the ground truth (GT).

References

[1] Shang-Ta Yang, Fu-En Wang, Chi-Han Peng, Peter Wonka, Min Sun, and Hung-Kuo Chu. Dula-net: A dual-projection network for
estimating room layouts from a single RGB panorama. CoRR, abs/1811.11977, 2018. 2






