Discrete Mathematics

Chih-Wei Yi

Dept. of Computer Science
National Chiao Tung University

March 16, 2009
§2.1 Sets
Basic Notations for Sets

- For sets, we’ll use variables S, T, U, \cdots.
- We can denote a set S in writing by listing all of its elements in curly braces:
 - $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.
 - $Q = \{p/q \mid p, q \in \mathbb{Z}, \text{and} q \neq 0\}$.

Discrete Math
The Theory of Sets (§2.1-§2.2, 2 hours)

§2.1 Sets
Basic Properties of Sets

- Sets are inherently *unordered*:
 - No matter what objects a, b, and c denote, \(\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\} \).

- All elements are *distinct* (unequal); multiple listings make no difference!
 - \(\{a, a, b\} = \{a, b, b\} = \{a, b\} = \{a, a, a, a, b, b, b\} \).
 - This set contains at most 2 elements!
Definition of Set Equality

- Two sets are declared to be equal \textit{if and only if} they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.

Example

\[\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\} = \{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\}. \]
Infinite Sets

- Conceptually, sets may be *infinite* (i.e., not *finite*, without end, unending). Symbols for some special infinite sets:
 - \(\mathbb{N} = \{0, 1, 2, \ldots\} \)
 - The natural numbers.

- Infinite sets come in different sizes!
Conceptually, sets may be *infinite* (i.e., not *finite*, without end, unending). Symbols for some special infinite sets:

- \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The natural numbers.
- \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The integers.

Infinite sets come in different sizes!
Infinite Sets

- Conceptually, sets may be *infinite* (i.e., not *finite*, without end, unending). Symbols for some special infinite sets:
 - $\mathbb{N} = \{0, 1, 2, \ldots\}$ \text{The Natural numbers.}
 - $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ \text{The Integers.}
 - $\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125 \ldots$

- Infinite sets come in different sizes!
Venn Diagrams

Integers from -1 to 9

Odd integers from 1 to 9

Primes less than 10

Even integers from 2 to 9

Positive integers less than 10
Basic Set Relations: Member of

Definition

\(x \in S \) ("\(x \) is in \(S \)"") is the proposition that object \(x \) is an element or member of set \(S \).

- E.g.,
 - \(3 \in \mathbb{N} \).
 - \(a \in \{ x \mid x \text{ is a letter of the alphabet} \} \).

- Can define set equality in terms of \(\in \) relation:

\[
\forall S, T : S = T \iff (\forall x : x \in S \iff x \in T).
\]

"Two sets are equal iff they have all the same members."

- \(x \notin S \equiv \neg(x \in S) \) "\(x \) is not in \(S \)"!!!

\[\emptyset \text{ ("null", "the empty set") is the unique set that contains no elements whatsoever.} \]

- \[\emptyset = \{ \} = \{ x \mid \text{False} \} \]
- No matter the domain of discourse, we have the axiom \[\neg \exists x : x \in \emptyset. \]
Subset and Superset Relations

Definition

$S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.

- $S \subseteq T \iff \forall x (x \in S \rightarrow x \in T)$.
- $\emptyset \subseteq S, \; S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Proof skills
 - $S = T \iff S \subseteq T \land S \supseteq T$.
 - $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$.
Proper (Strict) Subsets & Supersets

Definition

\[S \subset T \text{ ("S is a proper subset of T") means that } S \subseteq T \text{ but } T \not\subset S. \text{ Similar for } S \supset T. \]

Example:

\[\{1,2\} \subset \{1,2,3\} \]
The objects that are elements of a set may themselves be sets.

E.g, let \(S = \{ x \mid x \subseteq \{1, 2, 3\} \} \) then

\[
S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}.
\]

We denote \(S \) by \(2^{\{1,2,3\}} \).

Note that \(1 \neq \{1\} \neq \{\{1\}\} \).
Cardinality and Finiteness

Definition

\[|S| \] (read “the cardinality of \(S \)”) is a measure of how many different elements \(S \) has.

- E.g.,
 - \(|\emptyset| = 0 \)
 - \(|\{1, 2, 3\}| = 3 \)
 - \(|\{a, b\}| = 2 \)
 - \(|\{\{1, 2, 3\}, \{4, 5\}\}| = 2 \)

- If \(|S| \in \mathbb{N} \), then we say \(S \) is *finite*. Otherwise, we say \(S \) is *infinite*.

- What are some infinite sets we’ve seen?

 \(\mathbb{N}, \mathbb{Z}, \mathbb{R}, \ldots \)
The Power Set Operation

Definition

The power set $P(S)$ of a set S is the set of all subsets of S.

$$P(S) = \{ x \mid x \subseteq S \}.$$

- E.g., $P(\{a, b\}) = \{\phi, \{a\}, \{b\}, \{a, b\}\}$.
- Sometimes $P(S)$ is written 2^S. Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that $|P(\mathbb{N})| > |\mathbb{N}|$. There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x \mid P(x)\}$.
- Relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naive Set Theory is Inconsistent

- There are some naive set *descriptions* that lead pathologically to structures that are not *well-defined*. (That do not have consistent properties.)
- These “sets” mathematically *cannot* exist.
- Let $S = \{x \mid x \notin x\}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!
Ordered n-Tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For \(n \in \mathbb{N} \), an *ordered n-tuple* or a sequence of length \(n \) is written \((a_1, a_2, \cdots, a_n)\). The *first* element is \(a_1 \), etc.
- Note \((1, 2) \neq (2, 1) \neq (2, 1, 1)\).
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, \ldots, \(n \)-tuples.
Cartesian Products of Sets

Definition

For sets A, B, their Cartesian product

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

- E.g., $\{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$.
- For finite sets A, B, $|A \times B| = |A| \cdot |B|$.
- The Cartesian product is not commutative, i.e.

 $$\forall AB : A \times B \neq B \times A.$$

- Extends to $A_1 \times A_2 \times \cdots \times A_n$.

Review of §2.1

- Sets S, T, U, ···. Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$, ···.
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §2.2: More set ops: \cup, \cap, \neg, ···.
§2.2 Set Operations
Discrete Math

The Theory of Sets (§2.1-§2.2, 2 hours)

§2.2 Set Operations

The Union Operator

Definition

For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).

- Formally, $\forall A, B : A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that $A \cup B$ contains all the elements of A and it contains all the elements of B:

$$\forall A, B : (A \cup B \supseteq A) \land (A \cup B \supseteq B).$$
Example

\[\{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\}. \]

Example

\[\{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\} \]

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

Definition

For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\wedge") in B.

- Formally, $\forall A, B : A \cap B = \{x \mid x \in A \land x \in B\}$.
- Note that $A \cap B$ is a subset of A and it is a subset of B:

$$\forall A, B : (A \cap B \subseteq A) \land (A \cap B \subseteq B).$$
Intersection Examples

Examples

\[\{a, b, c\} \cap \{2, 3\} = \emptyset. \]

Examples

\[\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\}. \]

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

Definition

Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. (i.e., $A \cap B = \emptyset$.)

Example

the set of even integers is disjoint with the set of odd integers

Help, I’ve been disjointed!
Inclusion-Exclusion Principle

How many elements are in $A \cup B$?

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Example

How many students are on our class email list? Consider set $E = I \cup M$, where $I = \{s \mid s$ turned in an information sheet$\}$ and $M = \{s \mid s$ sent the TAs their email address$\}$. Some students did both! So,

$$|E| = |I \cup M| = |I| + |M| - |I \cap M|.$$
Set Difference

Definition

For sets A, B, the difference of A and B, written $A - B$, is the set of all elements that are in A but not B.

$$A - B := \{ x \mid x \in A \land x \notin B \} = \{ x \mid \neg(x \in A \implies x \in B) \}.$$

Also called: The complement of B with respect to A.

- E.g., $\{1, 2, 3, 4, 5, 6\} - \{2, 3, 5, 7, 9, 11\} = \{1, 4, 6\}$, and

$$\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\}$$

$$= \{x \mid x \text{ is an integer but not a nat. } \#\}$$

$$= \{x \mid x \text{ is a negative integer}\}$$

$$= \{\ldots, -3, -2, -1\}.$$
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A".
Set Complements

Definition

The universe of discourse can itself be considered a set, call it U. When the context clearly defines U, we say that for any set $A \subseteq U$, the complement of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.

Example

If $U = \mathbb{N}, \{3, 5\} = \{0, 1, 2, 4, 6, 7 \ldots \}$.
An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \not\in A \}$$
Set Identities

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Identity</th>
<th>Domination</th>
<th>Idempotent</th>
<th>Double complement</th>
<th>Commutative</th>
<th>Associative</th>
</tr>
</thead>
</table>
| *A ∪ ∅ = A; A ∩ U = A.* | *A ∪ U = U; A ∩ ∅ = ∅.* | *A ∪ A = A; A ∩ A = A.* | *A = A.* | | *A ∩ B = B ∩ A; A ∪ B = B ∪ A.* | *
| *A ∪ (B ∪ C) = (A ∪ B) ∪ C;* | | | | | *A ∩ (B ∩ C) = (A ∩ B) ∩ C.* |
DeMorgan’s Law for Sets

Theorem

Exactly analogous to (and derivable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B},
\]

\[
\overline{A \cap B} = \overline{A} \cup \overline{B}.
\]
To prove statements about sets, of the form $E_1 = E_2$ (where E’s are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use set builder notation & logical equivalences.
- Use a membership table.
Method 1: Mutual Subsets

Example

Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution

First, show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
- We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.

- Therefore, $x \in (A \cap B) \cup (A \cap C)$.
- Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Next, show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. ...
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Example

Prove \((A \cup B) \setminus B = A \setminus B\).

Solution

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Example

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(A \cup B)</th>
<th>((A \cup B) - C)</th>
<th>(A - C)</th>
<th>(B - C)</th>
<th>((A - C) \cup (B - C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>
Review of §2.1-§2.1

- Sets S, T, U, ... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, ...
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even unordered sets of sets, \(X = \{A \mid P(A)\}\).
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $A_1 \cup A_2 \cup \cdots \cup A_n \equiv (\cdots ((A_1 \cup A_2) \cup \cdots) \cup A_n)$
 (grouping & order is irrelevant)
- “Big U” notation: $\bigcup_{i=1}^{n} A_i$.
- Or for infinite sets of sets: $\bigcup_{A \in X} A$.
Generalized Intersection

- Binary intersection operator: \(A \cap B \).
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \cdots \cap A_n \equiv ((\ldots (A_1 \cap A_2) \cap \ldots) \cap A_n) \text{ (grouping & order is irrelevant)} \]
- “Big Arch” notation: \(\bigcap_{i=1}^{n} A_i \).
- Or for infinite sets of sets: \(\bigcap_{A \in X} A \).
Representing Sets with Bit Strings

- For an enumerable u.d. U with ordering \{x_1, x_2, \ldots\}, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i : x_i \in S \iff (i < n \land b_i = 1)$.

 - E.g., $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

- In this representation, the set operators “∪”, “∩”, “¬” are implemented directly by bitwise OR, AND, NOT!