4.26 For a fixed string \(x \), we know that \(\Sigma^*x\Sigma^* \) is a regular expression. By Problem 2.18(a) and its selected solution (see p.132 and 135), we know that \(L(G) \cap (\Sigma^*x\Sigma^*) \) is also context free, hence there exists a context free grammar \(G'_{(G,x)} \) such that \(L(G) \cap (\Sigma^*x\Sigma^*) = L(G'_{(G,x)}) \).

We construct the following TM to decide the language \(C \):

\[T = "\text{On input } < G, x >, \text{ where } G \text{ is a CFG and } x \text{ is a string.} \]

1. Let the CFG of \(L(G) \cap (\Sigma^*x\Sigma^*) \) be \(G'_{(G,x)} \).
2. Run the decider \(R := R_{E_{CFG}} \) in Theorem 4.8 on \(< G'_{(G,x)} > \).
3. If \(R \) accepts \(< G'_{(G,x)} > \), then \(T \) rejects \(< G, x > \); otherwise, \(T \) accepts \(< G, x > \).

(Correctness:)

Note that \(R \) is the decider for \(E_{CFG} \) so for any description \(< G' > \) of a CFG, \(R \) always stops in either the accept state or the reject state.

If \(x \) is a substring of some \(w \in L(G) \), then \(L(G) \cap (\Sigma^*x\Sigma^*) \neq \emptyset \).

\(\Rightarrow R \) rejects \(< G'_{(G,x)} > \). \(\Rightarrow T \) accepts \(< G, x > \).

If \(x \) is NOT a substring of any \(w \in L(G) \), then \(L(G) \cap (\Sigma^*x\Sigma^*) = \emptyset \).

\(\Rightarrow R \) accepts \(< G'_{(G,x)} > \). \(\Rightarrow T \) rejects \(< G, x > \).

4.28 Since the language \(A \) is recognizable, there exists an enumerator \(E_A \) for \(A \) and hence we can let the output of \(E_A \) be \(\{ < M_1 >, < M_2 >, ... \} \), where every \(M_i \) is a decider. Let \(s_1, s_2, s_3, ... \) be a list of all possible string in \(\Sigma^* \) (see p.180 in the textbook). We will use diagonalization method to construct a language \(D \):

\[D = \{ s_i \in \Sigma^* : s_i \notin L(M_i) \} \]

Consider this TM to decide \(D \):

\[T = "\text{On input } x: \]

1. If \(x \notin \Sigma^* \), rejects; otherwise, \(x = s_j \) for some \(j \).
2. Find the description \(< M_j > \) enumerated by \(E_A \), and simulate \(M_j \) on \(s_j \).
3. If \(M_j \) accepts \(s_j \) then \(T \) rejects \(s_j \); otherwise, \(T \) accepts \(s_j \).

(Correctness:)

Note that the step 1 rejects any \(x \notin \Sigma^* \), so obviously step 2 and 3 make \(L(T) = D \).

Besides, for any \(i \in \mathbb{N} \), \(M_i \) can decide if a string in \(\Sigma^* \) belongs to \(L(M_i) \) or not, hence \(T \) is a decider. The most important of all is that for any \(j \), the answer of \(T \) on \(s_j \) is different from \(M_j \), hence \(< T > \notin A \).
5.4. “No.”
Consider the languages
\(A = \{0^n1^n : n \in \mathbb{N} \} \) and \(B = \{1\} \) over \(\Sigma = \{0, 1\} \). Define the function \(f : \Sigma^* \to \Sigma^* \) by
\[
f(w) = \begin{cases}
1, & \text{if } w \in A; \\
0, & \text{otherwise.}
\end{cases}
\]
Note that \(f \) is a computable function and \(w \in A \) if and only if \(f(w) \in B \). Hence, \(A \leq_m B \). However, \(A \) is not regular, while \(B \) is regular.

5.23 If \(A \) is decidable, there is a Turing Machine \(M \) to decide it. we define function \(f \) that
\[
f(w) = \begin{cases}
01, & \text{if } w \in A; \\
10, & \text{if } w \not\in A.
\end{cases}
\]
We can construct a TM to compute the function that it first simulate \(M \), and output 01 if accepted, otherwise output 10. So \(A \leq_m 0^*1^* \) since \(w \in A \) iff \(f(w) \in 0^*1^* \).
Conversely, because \(0^*1^* \) is decidable, if \(A \leq_m 0^*1^* \), \(A \) is also decidable by Theorem 5.22.

5.25 Consider the language \(J = \{w | \text{either } w = 0x \text{ for some } x \in A_{TM}, \text{ or } w = 1y \text{ for some } y \in A_{TM} \} \) defined in problem 5.24. We show that \(J \) is undecidable and \(J \leq_m J \).
Consider the function \(f(w) = 0w \). By the definition of \(J \), \(w \in A_{TM} \) iff \(f(w) \in J \). It implies that \(A_{TM} \leq_m J \). Since \(A_{TM} \) is undecidable, \(J \) is also undecidable by Corollary 5.23. Now define another function
\[
g(w) = \begin{cases}
x, & \text{if } w = 0x, \\
0, & \text{if } w = 1x, \\
0\langle M, w \rangle, & \text{otherwise. (Where } M \text{ is a TM accepting all inputs.)}
\end{cases}
\]
such that \(w \in J \) iff \(f(w) \in J \). By the existence of such function, we have \(J \leq_m J \).
Note that here we consider the languages in binary encoding.

5.30.c If \(L(M_1) = L(M_2) \), then \(\langle M_1 \rangle \in ALL_{TM} \) iff \(\langle M_2 \rangle \in ALL_{TM} \) because by the definition of the language, whether a TM \(M \) belongs to \(ALL_{TM} \) depends only on its languages \(L(M) \), so \(ALL_{TM} \) is a property of the TM’s language.
And we can simply construct two TM \(N_1, N_2 \) such that \(N_1 \) always accept all inputs and \(N_2 \) reject all inputs. Since \(N_1 \in ALL_{TM} \) and \(N_2 \not\in ALL_{TM} \), it’s a nontrivial property. By Rice’s theorem it’s undecidable.