RSA and Its proof
The RSA Algorithm

1. Motivation:

 Alice \[\rightarrow\] Bob

 m

 Eve

 <1> Alice and Bob do not want to take the time to send a courier with a key.

 <2> All information that Alice sends to Bob will be obtained by Eve.
Question: Is it possible for a message to be sent in such a way that Bob can read it but Eve cannot?

② Solution to ①: public key cryptosystem

It was first publicly suggested by Diffie and Hellman in their classic paper [1976]. (key exchange) However, they did not yet have a practical implementation.
③ In 1977, RSA (Rivest, Shamir, Addleman) proposed RSA algorithm, based on the idea that factorization of integers into their prime factors is hard.

④ It had long been claimed that government cryptographic agencies had discovered the RSA algorithm several years earlier, but secrecy rules prevented them from releasing any evidence.
5 In 1997, documents released by CESG, a British crypto agency, showed that in 1970, James Ellis had discovered public key crypto, and in 1973, Clifford Cocks had written an internal document describing a version of RSA algorithm.
Here is how the RSA algorithm works,

1. Bob chooses two distinct large primes \(p \) and \(q \) and let \(n = pq \).
2. Bob also chooses an encryption exponent \(e \) such that \(\gcd(e, (p-1)(q-1)) = 1 \)
3. He sends the pair \((n, e) \) to Alice but keeps the values of \(p \) and \(q \) secret.
Alice writes her message as number \(m \). If \(m \) is larger than \(n \), she breaks the message into blocks, each of which is less than \(n \). However, for simplicity let's assume \(m < n \).

Alice computes

\[
 c = m^e \pmod{n}
\]

and sends \(c \) to Bob.
Since Bob knows p and q, he computes $(p-1)(q-1)$ and finds the decryption exponent d with $d \cdot e \equiv 1 \pmod{(p-1)(q-1)}$.

(As we'll see later)

$$m = c^d \pmod{n}$$
7 Summary of the RSA Algo

1. Bob chooses secret primes p and q and compute $n=pq$.
2. Bob chooses e with $\gcd(e,(p-1)(q-1)) = 1$.
3. Bob computes d with $de \equiv 1 \pmod{(p-1)(q-1)}$.
4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m as $c \equiv m^e \pmod{n}$ and sends c to Bob.
6. Bob decrypts by computing $m \equiv c^d \pmod{n}$.
\[C = m^e \pmod{n} \]

\[m = C^d \pmod{n} \]
(8) Eq. Bob chooses

\[p = 885320963, \quad q = 238855417 \]

\[n = pq = 21463707796206571 \]

encryption exponent \(e = 9007 \)

\[m = 30120 \]

Alice computes

\[c \equiv m^e \equiv 30120^{9007} \equiv 11353585035722866 \pmod{n} \]

Alice sends \(c \) to Bob.
Bob uses the extended Euclidean algorithm to compute decryption exponent d:
\[d \equiv e^{-1} \pmod{(p-1)(q-1)} \]
\[d = 116402471153538991 \]

Bob computes
\[c^d \equiv 113535859035722866^{116402471153538991} \]
\[\equiv 30120 \pmod{n} \]

So Bob obtains the original message.
9. Why RSA works?

By Euler's Thm,

If \(\gcd(a, n) = 1 \), then \(a^{\phi(n)} \equiv 1 \pmod{n} \)

So \(\gcd(m, n) = 1 \)

Since \(de \equiv 1 \pmod{\phi(n)} \)

\(de = 1 + k\phi(n) \)

So \(c^d \equiv (me)^d \equiv m^{1 + k\phi(n)} \equiv m \cdot (m^{\phi(n)})^k \equiv m \cdot 1^k \equiv m \pmod{n} \)
<2> If \(\gcd(m, n) \neq 1 \)

1. \(\gcd(m, p) = 1 \)

\[m^{p-1} = 1 \pmod{p} \quad (\text{Fermat's little Theorem}) \]

\[m^{1 + k(p-1)(q-1)} = m \pmod{p} \quad (*) \]

2. \(\gcd(m, p) = p \) then \(m = 0 \pmod{p} \)

\((*)\) is valid again
3. Hence \(m^{ed} = m \pmod{p} \)

4. Similar argument \(m^{ed} = m \pmod{q} \)

5. By CRT

\[c^d = (m^e)^d = m^{ed} = m \pmod{n} \]

QED.
The security of RSA is provided by the assumption that \(n \) cannot be factored.

If we know \(n \) and \(\phi(n) \), then we can quickly find \(p \) and \(q \).

\[
\text{pf} \quad n - \phi(n) + 1 = pq - (p-1)(q-1) + 1 = p+q
\]

\[
\therefore \quad x^2 - (n - \phi(n) + 1)x + n = x^2 - (p+q)x + pq = (x-p)(x-q)
\]
\[p, q = \frac{(n - \phi(n) + 1) \pm \sqrt{(n - \phi(n) + 1)^2 - 4n}}{2} \]

Eg. \(n = 221, \phi(n) = 192 \)
\[x^2 - 30x + 221 \]
\[p, q = \frac{30 \pm \sqrt{30^2 - 4 \cdot 221}}{2} = 13, 17 \]

\(<2>\) If we know \(d \) and \(e \), then we can probably factor \(n \).

\(<pf>\) \(\text{mod} \equiv m (\text{mod} \ n) \ \forall \gcd(m, n) = 1 \)
\[m^{ed-1} \equiv 1 \quad (\text{mod } n) \]

\[ed-1 = k \phi(n) \]

test possible \(k \) to find \(\phi(n) \)

and then find \(p, q \) by \(\langle 1 \rangle \)

The point of claims \(\langle 1 \rangle \) and \(\langle 2 \rangle \) is that finding \(\phi(n) \) or finding \(d \) is as hard as factoring \(n \).
In practice, the RSA algorithm is not quite fast enough for sending massive amounts of data. Therefore, the RSA algorithm is often used to send a key for a fast encryption method such as DES.