Factoring Algorithms
1. Pollard’s $p-1$ algorithm
 - Pollard’s rho algorithm (Omitted)
2. Dixon’s random squares algorithm
 - Morrison and Brillhart’s continued fraction method (Omitted)
 - Lentra’s elliptic curve method (ECM) (Omitted)
3. Quadratic sieve (QS)
4. Factoring algorithms in practice
1. Pollard's p-1 algorithm

input: an integer \(n \), and a prespecified “bound” \(B \)

output: factors of \(n \)

\(a \leftarrow 2 \)

for \(j \leftarrow 2 \) to \(B \)

\(\text{do } a \leftarrow a^j \mod n \)

\(d \leftarrow \gcd(a - 1, n) \)

if \(1 < d < n \)

then return\((d)\)

else return\("failure\)
Suppose \(p \) is a prime divisor of \(n \), and suppose that \(q \leq B \) for every prime power \(q \mid (p-1) \). Then
\[(p-1) \mid B! \]
At the end of for loop, we have
\[a = 2^B! \mod n \]
Now
\[2^{p-1} = 1 \mod p \quad \text{(by Fermat’s little Thm)} \]
Since \((p-1) \mid B! \), it follows
\[a = 2^B! = 1 \mod p \]
and hence \(p \mid (a-1) \). Since we also have \(p \mid n \),
d\(= \gcd(a-1, n) \) will be a non-trivial divisor of \(n \)
(unless \(a = 1 \)).
E.g. $n=15770708441$, $B=180$

\[a = 2^{180}! = 11620221425 \]
\[D = \gcd(a-1, n) = 135979 \]

In fact, the complete factorization of n into primes is
\[15770708441 = 135979 \times 115979 \]

The factorization succeeds because 135978 has only “small” prime factors:
\[135978 = 2 \times 3 \times 131 \times 173 \]
2. Dixon’s random squares algorithm

The idea is to locate \(x, y \in \mathbb{Z}_n \) with \(x^2 \equiv y^2 (\mod n) \); if \(x \neq \pm y (\mod n) \), then \(\gcd(x+y, n) \) is a nontrivial factor of \(n \).

(Why?) since \(n \mid (x-y)(x+y) \) but neither of \(x-y \) or \(x+y \) is divisible by \(n \).

- Eg. \(n=15, x=2, y=7 \) \((2^2=7^2 \mod 15) \Rightarrow \gcd(2+7, 15)=3 \) is a nontrivial factor of \(n \).
- Eg. \(n=77, x=10, y=32 \) \((10^2=32^2 \mod 77) \Rightarrow \gcd(10+32, 77)=7 \) is a nontrivial factor of \(n \).
factor base and p_t-smooth

- A factor base $B=\{p_1, p_2, \ldots, p_t\}$ consisting of the first t primes is selected. If b factors over B, b is said to be p_t-smooth.

- Eg: $B=\{2, 3, 5\}$, $b=2^3 \cdot 5^6$ is 5-smooth; $b=2^3 \cdot 7^6$ is not 5-smooth.

- We may include -1 in B to handle the negative b

$B=\{p_0, p_1, p_2, \ldots, p_t\}$, with $p_0=-1$.
Algorithm

input: a composite integer \(n \) and factor base \(B = \{p_1, p_2, \ldots, p_t\} \)
output: factors of \(n \)

(1) Suppose \(t+1 \) pairs \((a_i, b_i = a_i^2 \text{ mod } n)\) are obtained, where

\[b_i \text{ is } p_t\text{-smooth over } B \text{ and the factorizations are given by} \]

\[b_i = \prod_{j=1}^{t} p_j^{e_{ij}}, \quad 1 \leq i \leq t+1. \]

(2) A set \(S \) is to be selected so that \(\prod_{i \in S} b_i \) has only even powers of primes appearing.

(3) Let \(x = \prod_{i \in S} a_i \) and \(y = \sqrt[\prod_{i \in S} b_i] \), and do the following compare

3.1 If \(x = \pm y \text{ (mod } n) \), then return "not factoring".

3.2 If \(x \neq \pm y \text{ (mod } n) \), then return \(\gcd(x + y, n) \).
Eg: $n=10057$, $t=5$, $B=\{2,3,5,7,11\}$

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>$b_i = a_i^2 \mod n$</th>
<th>factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231</td>
<td>1018</td>
<td>$2*509$ (discard!)</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
<td>968</td>
<td>2^3*11^2</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
<td>3168</td>
<td>2^53^211</td>
</tr>
<tr>
<td>3</td>
<td>1006</td>
<td>6336</td>
<td>2^63^211</td>
</tr>
<tr>
<td>4</td>
<td>3010</td>
<td>8800</td>
<td>2^55^211</td>
</tr>
<tr>
<td>5</td>
<td>4014</td>
<td>882</td>
<td>23^27^2</td>
</tr>
<tr>
<td>6</td>
<td>4023</td>
<td>2816</td>
<td>2^8*11</td>
</tr>
</tbody>
</table>

If $S=\{4,5,6\}$, then $x=3010*4014*4023 \mod n=2748$

$y=2^7*3*5*7*11 \mod n=7042$

Since $2748 \neq \pm 7042 (\mod n)$, we obtain a nontrivial factor $\gcd(x+y,n)=89$, and $10057=89*113$.

If $S=\{1,5\}$, then $x=105*4014 \mod n=9133$ and $y=2^2*3*7*11=924$.

Unfortunately, $9133 \equiv -924 (\mod n)$, and no useful information is obtained.
Eg : n=15770708441, t=6, B={2,3,5,7,11,13}

\[8340934156^2 = 3\times7 \pmod{n}\]
\[12044942944^2 = 2\times7\times13 \pmod{n}\]
\[2773700011^2 = 2\times3\times13 \pmod{n}\]

\[(8340934156\times12044942944\times2773700011)^2 = (2\times3\times7\times13)^2 \pmod{n}\]

\[9503435785^2 = 546^2 \pmod{n}\]

gcd(9503435785–546, 15770708441)=115759

to find the factor 115759 of n
3. Quadratic sieve algorithm (simple version)

input: a composite integer \(n \)
output: factors of \(n \)

(1) Construct a factor base with \(-1\)

(2) Define \(m = \left\lfloor \sqrt{n} \right\rfloor \), \(q(z) = (z + m)^2 - n \)

(3) Let \(a_i = z + m \) and \(b_i = q(z) = a_i^2 - n \) for \(z = 0, 1, -1, 2, -2, \ldots \). A set \(S \) is to be selected so that \(\prod_{i \in S} b_i \) has only even powers of primes appearing.

(4) Let \(x = \prod_{i \in S} a_i \) and \(y = \sqrt{\prod_{i \in S} b_i} \), and do the following

\[x \neq \pm y \pmod{n}, \text{ then return } \gcd(x + y, n). \]
- **Improvements:**

- We may include -1 in B to handle the negative b
 \[B = \{ p_0, p_1, p_2, \ldots, p_t \}, \text{ with } p_0 = -1. \]

- Define
 \[m = \left\lfloor \sqrt{kn} \right\rfloor, \quad q(z) = (z + m)^2 - kn \]

Let \(a_i = z + m \) and \(b_i = q(z) = a_i^2 - kn \)
for \(z = 0, 1, -1, 2, -2, \ldots \) \(\text{ and } k = 1, 2, \ldots \).
Eg: n=10057

\[m = \left\lfloor \sqrt{n} \right\rfloor = 100 \]

\[q(z) = (z + 100)^2 - 10057 \]

\[B = \{2,3,11,19\} \cup \{-1\} \]

<table>
<thead>
<tr>
<th>(z)</th>
<th>(a = z + m)</th>
<th>(b = q(z))</th>
<th>factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>-57</td>
<td>-3*19</td>
</tr>
<tr>
<td>-1</td>
<td>99</td>
<td>-256</td>
<td>-2^8</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>144</td>
<td>2^4*3^2</td>
</tr>
<tr>
<td>-3</td>
<td>97</td>
<td>-648</td>
<td>-2^3*3^4</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
<td>968</td>
<td>2^3*11^2</td>
</tr>
</tbody>
</table>

If \(S = \{1\} \), then \(x = 101 \) and \(y = 2^2*3 \).

Since \(x \not\equiv y \pmod{n} \), we obtain a nontrivial factor \(\gcd(x+y,n) = 113 \), and \(10057 = 89*113 \).

If \(S = \{-1,-3, 5\} \), then \(x = 99*97*105 \) and \(y = 2^7*3^2*11 \).

Unfortunately, \(x \equiv y \pmod{n} \), and no useful information is obtained.
4. Factoring algorithms in practice

(Asymptotic running times)

1. Quadratic sieve
 \[O(\exp((1 + o(1)) \sqrt{\ln n \ln \ln n})) \]

2. Elliptic curve (p is the smallest prime factor of n)
 \[O(\exp((1 + o(1)) \sqrt{2 \ln p \ln \ln p})) \]

3. Number field sieve
 \[O(\exp((1.92 + o(1)) (\ln n)^{\frac{1}{3}} (\ln \ln n)^{\frac{2}{3}})) \]
The RSA Challenge
http://www.rsa.com/rsalabs/node.asp?id=2092

- **RSA-640 is factored!** (11/2/2005) (193 digits)
- **RSA-200 is factored!** (5/9/2005) (663 bits)
- **RSA-576 is factored!** (12/3/2003) (174 digits)
- **RSA-160 is factored!** (1/6/2003) (530 bits)
- **RSA-155 is factored!** (8/22/1999) (512 bit)
- **RSA-140 is factored!** (2/2/1999)