How to solve

\[ax = b \mod N \]
1. If \(\gcd(a, N) = 1 \)

\[\exists! x \equiv b \mod N \]

\[\therefore ax = b \mod N \]

\[\Rightarrow a^{-1}ax = a^{-1}b \mod N \]

\[\Rightarrow x = a^{-1}b \mod N \]
② If $g = \gcd(a, N) \neq 1$ and $g \mid b$, there are g solutions!

How to find these g solutions?

Let $a' = \frac{a}{g}$, $b' = \frac{b}{g}$, $N' = \frac{N}{g}$

Solve $a'x = b' \mod N'$ as in \Box
Let x' is the unique solution (mod N').

Those g solutions are

$$x = x' + iN'$$

$$i = 0, 1, \ldots, g-1$$
③ If \(g = \gcd(a, N) \neq 1 \) and \(g \neq b \), there is NO solution!
Eg for \(\mathbb{Z} \):

\[21 \cdot x \equiv 12 \mod 36 \]

Sol: \(g = 3 = \gcd (21, 36) \)

Solve \(7 \cdot x \equiv 4 \mod 12 \)

\[x = 7^{-1} \cdot 4 = 7 \cdot 4 = 28 = 4 \mod 12 \]
there are 3 solutions \((\text{mod } 36)\)

\[x = 4 + i \cdot 12 \quad \text{for } i = 0, 1, 2 \]

\[\therefore x = 4, 16, 28 \quad \text{mod } 36 \]