Delay Variation Tolerance for Domino Circuits

Kai-Chiang Wu, Cheng-Tao Hsieh, Shih-Chieh Chang
Department of CS, National Tsing Hua University, Hsinchu, Taiwan
Alexe@nthucad.cs.nthu.edu.tw, jdshieh@nthucad.cs.nthu.edu.tw, scchang@cs.nthu.edu.tw

ABSTRACT

Factors of delay variation, such as process variation and noise effects, may cause a manufactured chip to violate the pre-specified timing constraint. In this paper, we propose a novel re-synthesis technique to tolerate delay variation for domino circuits. Note that the slacks of nodes along critical paths are zero; any delay addition to those zero-slack nodes will worsen the final performance of a circuit. Our basic idea is to increase the slacks of nodes in the critical region by appending a redundant auxiliary sub-circuit to the original circuit. The auxiliary sub-circuit can cause critical paths to become false paths or imperceptible paths [7] so as to improve the capability of delay variation tolerance. Experimental results are very encouraging.

1. Introduction

Circuit delay in advanced technologies becomes increasingly sensitive to process variation and noise [1][2]. Those factors would cause a circuit’s performance to fluctuate and, in the worst case, a timing violation may occur. Especially for high performance designs, timing critical regions are often implemented in domino circuit style. As a result, the delay variation problem becomes a critical issue for domino circuits. In this paper, we propose a re-synthesis method to tolerate delay variation for a domino circuit.

The slacks of nodes along critical paths are zero; any delay addition to those zero-slack nodes will worsen the final performance of a circuit. The degree of delay variation tolerance in [3] is formulated by the concept of slacks. The authors proposed a re-synthesis technique which incorporates Triple Module Redundancy (TMR) like structure into a circuit so that the circuit can tolerate a given range of delay uncertainty. Their results show that by adding 40% area overhead, a certain degree of variation tolerance can be achieved for static CMOS circuits.

Unlike static circuits, dynamic domino circuits operate in two phases: the pre-charge phase and the evaluation phase. To avoid the racing problem, domino circuits require all signals, except primary inputs, to have only rising transitions during the evaluation phase. Due to the rising-transition-only property, delay variation tolerance in domino circuits is much easier to accomplish than that in static circuits. In other words, directly applying the same method as [3] to domino circuits may have an unnecessarily large area.

Our basic idea of delay variation tolerance is to combine a (target) domino circuit with a redundant auxiliary sub-circuit, which is illustrated in the following example. A domino circuit C_1 in Figure 1 implements logic function $F_1 = (a+b+c)d+e = ad+bd+cd+e$. For delay tolerance on C_1, we construct an auxiliary circuit C_2 implementing $F_2 = (a+b)d = ad+bd$ and generate a new output $F_1' = F_1 + F_2$. Because the on-set of F_1 apparently covers that of F_2 (i.e., $F_1 \supseteq F_2$), the new function $F_1' = F_1 + F_2$ is identical to the original function F_1. We will show that appending circuit C_2 does not change the functionality of the original circuit but has the effect of delay tolerance. Consider an input pattern $(a, b, c, d, e) = (1, 0, 0, 1, 0)$ which induces transitions propagating along critical (highlighted) paths in both C_1 and C_2. Since both F_1 and F_2 have only rising transitions and feed into an OR gate, whichever rising signal arrives earlier will dominate the OR gate’s output. In other words, the earlier arrival of either F_1 or F_2 determines the output value instead of the late one. Delay variation tolerance is consequently achieved because late arriving signals will not influence the whole circuit’s delay.

In addition to proposing a new structure for domino circuits, this paper also derives novel theorems which allow us to carry out a smaller C_2 than those from [3]. We also show that delay variation tolerance can be applied to both internal nodes and primary outputs to achieve better results.

Figure 1: An example demonstrating delay variation tolerance for a domino circuit.
The experiments show that the area overhead of our method is less than a half of that from [3]. Also, we have performed Monte-Carlo experiments. The delay of a gate is given as a probability density function similar to [6]. The results show that about 77% of samples of the original circuit C6288 can meet a certain delay requirement; however, about 99% of samples of the corresponding re-synthesized circuit can satisfy the same requirement.

We would like to mention that there have been several studies [4][5][7] attempting to optimize the statistical timing results by gate sizing techniques. These methods require statistical models to be given for all gates. We think that if statistical distributions of gates and statistical correlations among gates are given precisely, methods [4][5][7] can be more efficient than redundant structures as described by this paper. On the other hand, this paper does not assume any statistical timing models. Therefore, our method will be better when accurate statistical models are not available. For example, very few chips are manufactured for new technologies, such as 90nm and 65nm, so it is difficult to gather or to verify statistical models for new technologies. In addition to process variation, delay variation due to noise issues, such as IR drop, is not easy to model.

2. Delay Variation Tolerance in Duplex Domino Systems

Let a domino circuit C_1 be under consideration for delay variation tolerance. A duplex system is shown in Figure 2, which consists of the original circuit C_1, its duplication C_2, and an OR gate taking the outputs of C_1 and C_2 as its inputs. There are two properties for a duplex domino system. First, it performs the same function as the original circuit. Secondly, a transition traveling along a path in C_1 also travels along the mirror path in C_2. Since a domino circuit has only 0-to-1 transitions, the OR gate’s output transits from 0 to 1 when the earlier transition arrives. Any delay increase which is transitions, the OR gate’s output transits from 0 to 1 when the

![Figure 2: A duplex system.](image_url)

3. Re-synthesis for Delay Variation Tolerance

To accomplish a given delay tolerance value d_t without adding too much area overhead, a practical scheme originated from a duplex system is proposed. Our re-synthesis steps are as follows. (1) Begin with a duplex system in Figure 2. (2) Remove and modify some wires in C_2 for area reduction while maintaining the tolerance value. We now discuss how to perform wire removal and modification in C_2.

Assume the original circuit C_1 implements the logic function F_1, the redundant auxiliary circuit C_2 implements F_2, and the combinative output is $F_1' = F_1 + F_2$. If the on-set of F_2 is a sub-set of that of F_1 (i.e., $F_2 \subseteq F_1$), we can preserve the original functionality of $F_1' (= F_1 + F_2 = F_1)$. While there are many possible Boolean functions which satisfy $F_2 \subseteq F_1$, we only consider wire removal in C_2 to reduce the on-set of F_2.

Before presenting our theorems, we describe what wires in C_2 can be removed to maintain $F_2 \subseteq F_1$ in the following lemma.

Lemma 1: All direct input wires to OR gates in C_2 are redundant and can be simultaneously removed.

Proof: Omitted.

Let the delay tolerance value be d_t. A path is called a d_t-critical path if its delay is greater than the timing requirement minus d_t. In other words, d_t delay increment on a d_t-critical path will cause the path’s delay to exceed the
timing requirement. In addition, we say that a node is a
d_i-critical node if it is along a d_i-critical path. One can also find that the slack of a d_i-critical node is smaller than d_i.

Consider the example in Figure 3, where the delay of each gate is 1. Suppose the delay tolerance d_i is 1 and the timing requirement d_i is 6. In this example, the timing requirement is equal to the length of the longest path. Path $\{s-b-d-f-g-h-i\}$ is a d_i-critical path because its delay is 6, greater than d_i-1. In fact, all highlighted paths in Figure 3 are d_i-critical paths. Node g is a d_i-critical node because it is along a d_i-critical path. Besides, all highlighted nodes $\{a, b, o, d, e, f, g, h, i\}$ are d_i-critical nodes. Note that the slacks of these d_i-critical nodes are 0, smaller than d_i. A node is defined to be a d_i-dominator if it is a d_i-critical node and all d_i-critical paths to a primary output must pass through the node. A wire $n_i \rightarrow n_2$ is a d_i-side input if node n_1 is not a d_i-critical node but node n_2 is a d_i-critical node. In the same example, nodes $\{g, h, i\}$ are d_i-dominators because all d_i-critical paths to the primary output must pass through these nodes. Wire $w_1 (l \rightarrow i)$ is a d_i-side input because node l is not a d_i-critical node but node i is. Similarly, wires $\{w_2, w_3, w_4, w_5, w_6\}$ are also d_i-side inputs.

Theorem 1 [3]: A d_i-side input wire w to an OR d_i-dominator in C_2 can be removed (replaced by a non-controlling value, i.e. a logic 0) without violating the requirement of d_i delay tolerance.

Proof: Omitted.

Take the original circuit in Figure 3 as an example. A duplex system can be constructed by two duplicates (C_1 and C_2) of the original circuit. According to Theorem 1, we can remove wire w_1 in C_2 by replacing it with a logic 0 since it is a d_i-side input to OR d_i-dominator i.

We say that a node is a transitive fanout of wire w if there is a path from wire w to the node. In addition, in Figure 4, two paths may “converge” on a node, which is called the converging node of the two paths. We define node n to be the AND-converging node of two d_i-critical paths if these two paths converge on node n and node n is an AND gate. For example in Figure 4, d_i-critical paths p_1 and p_2 converge on an AND gate n so node n is the AND-converging node of p_1 and p_2. We have the following theorem.

Theorem 2: Let wire w be a d_i-side input to an OR gate in C_2. If there is no AND-converging node of d_i-critical paths in wire w’s transitive fanout, wire w can be removed without violating d_i delay tolerance.

Proof: Omitted.

For example, wire $w_3 (j \rightarrow e)$ can be removed according to Theorem 2. First, wire w_3 is a d_i-side input to OR gate e. The transitive fanout nodes of w_3 consist of $\{e, g, h, i\}$, among which OR gate g is the only converging node of d_i-critical paths. Since there is no AND-converging node in w_3’s transitive fanout, wire w_3 in C_2 can be removed. In fact, wires $\{w_3, w_5, w_6\}$ all satisfy the condition in Theorem 2 so wires $\{w_3, w_5, w_6\}$ in C_2 are removable. The resultant circuit after removing wires w_3 (by Theorem 1), w_5, w_5, and w_6 in C_2 is shown in Figure 5.

We can also adopt signal sharing as in [3] to further reduce the area overhead. Two signals which implement the
equivalent Boolean function but do not belong to d_c-critical paths can be shared. For example in Figure 5, the output of node n in C_1 and that of node n_2 in C_2 have the same functionality. We can share the output signals of n and n_2, as demonstrated in Figure 6. Suppose all equivalent signals are allowed to be shared without violating the requirement of d_t delay tolerance. The final circuit is shown in Figure 6.

A path is said to be an imperceptible path if any change (increase or decrease) on the path’s delay can never affect the circuit delay [7].

Theorem 3: After wire removal according to Theorem 1 and Theorem 2, all d_c-critical paths are either false paths or imperceptible paths [7].

Proof: Omitted.

The intuition for this theorem is as follows. Our wire removal theorems guarantee that after wire removal, circuits C_1 and C_2 still have the same output value whenever d_c-critical paths in C_1 or C_2 are activated. Therefore, any delay increment on a d_c-critical path will not affect a circuit’s delay. In Figure 6, all highlighted paths are either false paths or imperceptible paths. We now discuss slacks of nodes after re-synthesis. Consider node e in Figure 6. The longest true path passing through node e is $\{j-e-g-h-i\}$ whose path length is 5. Assume the timing requirement is 6. Therefore, node e has the slack of 1 in the re-synthesized circuit in Figure 6 while it has the slack of 0 in the original circuit in Figure 3. In another example, since all paths passing through node a are false paths, the slack of node a is infinite. Generally, after re-synthesis, paths whose delays are greater than 5 become either false paths or imperceptible paths; that is, the longest true path in the re-synthesized circuit has the delay of 5. As a result, the slack of each node in the re-synthesized circuit is at least 1 ($=d_t$).

4. Delay Tolerance on Internal Signals

The re-synthesis methodology described previously is applied to primary outputs whose arrival time is susceptible to delay variation. We can also employ an identical approach to protect the arrival time of internal signals from delay variation. Delay tolerance on internal signals can have the advantage of area reduction.

In Figure 7, consider the circuit which is almost the same as that in Figure 3 except node g in Figure 7 is an AND gate. Bold lines in Figure 7 represent d_c-critical nodes and d_c-critical paths. If the re-synthesis technique is applied to only the primary output, only d_c-side input wire w_1 in C_2 can be removed and the resultant circuit is shown in Figure 8. In this example, the area overhead is large because there is only one removable d_c-side input wire. We will show that by employing delay tolerance on internal signal w_f, the area penalty can be reduced. The result after performing re-synthesis on w_f is shown in the gray blocks in Figure 9. According to Theorem 3, path segment $\{s-b-d-f\}$ becomes either a false path (segment) or an imperceptible path (segment). Thus, path $\{s-b-d-f-x-g-h-i\}$ passing through a false path (segment) $\{s-b-d-f\}$ is also a false path. Similarly, all other paths passing through $\{t-b-d-f\}$, $\{s_2-b_2-f_2\}$, and $\{t_2-b_2-f_2\}$ are either false paths or imperceptible paths. Those

Figure 6: The re-synthesized circuit after signal sharing.

Figure 7: An example demonstrating delay tolerance on internal signals.

Figure 8: The re-synthesized circuit by applying delay tolerance on the primary output in Figure 7.
false paths or imperceptible paths no longer belong to d_t-critical paths. Consequently, nodes $\{a, o, e, g, h, i\}$ in Figure 9 become d_t-dominators. When we continue to perform delay tolerance on the primary output, d_t-side input wires to three OR d_t-dominators $\{o, e, i\}$ in C_2 become removable. The re-synthesized circuit is shown in Figure 10. The total area overhead of the re-synthesized circuit in Figure 10 is 7 (gates), whereas that of the re-synthesized circuit in Figure 8 without delay tolerance on internal signals is 9 (gates).

5. Experimental Results

We have implemented the re-synthesis method [3] and ours in SIS environment, and also experimented on a set of MCNC and ISCAS benchmarks. Table 1 provides the comparison of the area overhead between the method in [3] and ours individually. Then we compared the area overhead between the re-synthesized circuits. For example, circuit C880 has the area of 3569 and the delay of 33.6. When the delay tolerance is $3.36 (= 10\% \times 33.6$), the re-synthesized circuit by [3] has the area overhead of 31.2% of the original circuit's area. On the other hand, the re-synthesized circuit by our method has the area overhead of 14.9% of the original circuit's area. On the average, for 10% (15%) delay tolerance, the area overhead from [3] and ours is 29% (48%) and 12% (21%), respectively. Both the methods usually spend few seconds for each circuit.

We have also performed Monte-Carlo experiments to demonstrate the effect of delay variation tolerance in Table 2. In the experiment, the delay of a gate is given as a probability density function similar to [6]. We obtained 1000 samples of an original circuit and 1000 samples of its re-synthesized circuit with 10% delay tolerance from Monte-Carlo experiments. After that, the delay of each sample is calculated. In Table 2, column one lists the name of the original circuit. Let d_t be the delay of the circuit. Column two shows the number of circuit samples whose delays are smaller than $0.8 \times d_t$ for the original circuit, and column three shows the number for its re-synthesized circuit. Similarly, columns four to eleven report the numbers of samples whose delays are smaller than $0.9 \times d_t, 1.0 \times d_t, 1.1 \times d_t, 1.2 \times d_t$ for both the original circuit and its re-synthesized circuit. Take circuit t481 as an example. Let the timing requirement be $1.1 \times d_t$ ($1.1 \times 34.1 = 37.51$), 815 samples of the original circuit meet the timing requirement while 963 samples of the re-synthesized circuit satisfy the same requirement.

In Figure 11, we drew the distribution curves of all Monte-Carlo samples of circuit t481 and its re-synthesized circuit with 10% delay tolerance. The standard deviation of
the original circuit is 2.39 while that of the re-synthesized circuit is 1.92. The curves also reveal that the re-synthesized circuit has more stable timing behavior than the original circuit.

6. Conclusions

We have proposed a framework to re-synthesize a given domino circuit for d_t delay tolerance. Our method begins with a duplex system; we then adopt wire removal and signal sharing to reduce the area overhead of the delay tolerance structure. Two novel theorems for further area reduction are presented. Experimental results demonstrate the advantages of delay variation tolerance for a re-synthesized domino circuit.

References

Figure 11: The distribution curves of Monte-Carlo samples of circuit $t481$ and its re-synthesized circuit.