
Compiler-based vs. Hardware-based Power
Gating Techniques for Functional Units

Yen-Hsiang Fang Yuan-Shin Hwang
Dept. of Computer Science & Engineering

National Taiwan Ocean University
Keelung 20224

Taiwan

Yi-Ping You Jenq-Kuen Lee
Department of Computer Science
National Tsing Hua University

Hsinchu 30013
Taiwan

Abstract—Reducing leakage power of embed-
ded systems is essential as it constitutes an in-
creasing fraction of the total power consumption
in modern embedded processors. Power gating
of functional units has been proved to be an
effective technique to reduce leakage, and its
various implementations can be categorized into
compiler-based and hardware-based approaches.
Hardware-only designs rely on specific circuits
and microarchitectural designs to monitor in-
struction executions to determine when to power-
gate functional units, whereas compiler-based
methods attempt to exploit global information
of programs and let compilers embed special
instructions to turn on and off functional units.
This paper compares the efficiencies of hard-
ware and software techniques for power gating
of functional units. Experimental results of the
DSPstone benchmarks on Wattch show that the
hardware-only approach is generally effective
in reducing leakage, while the compiler-based
approach occasionally performs better as the
global knowledge of programs gathered by com-
pilers would avoid incurring excessive power-
gating on/off activities. This outcome suggests
a better scheme: a hardware-based technique is
deployed as the default power gating mechanism,
and a compiler would intervene only when its
analysis indicates the default method is inferior
for certain application programs.

0 This research was supported by NSC grant NSC95-
2221-E-019-012-MY3 and MOEA project 96-EC-17-A-
01-S1-034

I. I NTRODUCTION

Minimizing power dissipation is critical for
embedded systems, and it can be achieved by
techniques designed at the algorithmic, archi-
tectural, logic, and circuit levels [5]. Various
hardware and software techniques have been
proposed to reduce dynamic for power dissipa-
tion with architecture designs and/or software
arrangement at instruction level [1], [6], [11],
[19], [20], [24], [25], [26]. For example, several
types of code rearrangement have been used
to reduce the dynamic power, such as utilizing
the value locality of registers [6], swapping
operands for Booth multipliers [20], scheduling
VLIW instructions to reduce the power con-
sumption on the instruction bus [19], gating the
clock to reduce workloads [11], [25], [26], uti-
lizing cache subbanking mechanism [24], and
buffering instructions nested within loops in a
minicache [1]. Dynamic energy consumption is
the main concern of these methods since it is
the dominant form of power dissipation then.

As the minimum feature size gets smaller and
more transistors are packed densely onto pro-
cessors, static power dissipation due to leakage
takes an increasing fraction of total power in
processors. Static power dissipation increases
about 5 times each generation since the total
leakage current increases about 7.5 times [2],
[4]. Consequently, it is estimated that leakage
power will be the dominant form of power

dissipation soon [8], [13], [15], [17], [18], [23].
In order to minimize the impact, power gating
could be used to reduce leakage power [4], [12],
[14]. Specifically, a functional unit should be
shut down every time it enters a sufficiently
long idle period and be turned back on before it
is needed. Therefore, the key issue here is how
to identify the onsets and conclusions of long
idle periods and then perform power gating
to turn off and on functional units without
incurring significant performance penalties.

Power gating techniques can be categorized
into hardware-based and compiler-based ap-
proaches. Hardware-based methods rely on spe-
cial circuits and microarchitectural designs to
monitor instruction executions in order to de-
termine when to turn off and on functional
units [12], [14]. The advantage of this ap-
proach is that programs can be run without
any modifications, but its disadvantage is that it
cannot exploit global information of programs.
By contrast, compiler-based methods attempt
to integrate architecture and compiler power-
gating mechanisms [9], [21], [27], [29], [30],
[31]. This approach involves compilers insert-
ing specific instructions into programs to shut
down and wake up components based on data-
flow analysis or profiling information. The ben-
efit of this approach is that power gating will
be performed based on the insight knowledge
of programs gathered by compilers, while its
drawback is that additional instructions must
be implemented by the hardware to power-
gate on/off functional units and they must be
explicitly embedded into programs. Further-
more, extra efforts must be taken to carefully
merge power-gating instructions to avoid code
size explosion if multiple functional units are
guarded by power-gating circuits.

This paper compares the efficiencies of
hardware- and compiler-based techniques for
power gating of functional units. A straight-
forward implementation of power gating based
on a hardware counter [12] is compared with
a system that runs programs with compiler-

embedded on/off instructions [29]. In addi-
tion, the Sink-N-Hoist compiler framework is
used to merge several power-gating instruc-
tions into a single compound instruction, and
hence the code size explosion issue is mini-
mized [28]. Experimental results of the DSP-
stone benchmarks on Wattch [3] show that the
hardware-only approach generally outperforms
the compiler-based method, but there are still
a couple of programs that compiler-assisted
approach works better. This outcome reveals
that hardware-only techniques will reduce more
leakage power when idle and active phases of
programs are distinctive and last relatively long
time intervals. However, programs with short
active and idle periods would generate exces-
sive on/off activities and hence incur significant
overheads for the hardware-only approach. In
contrast, global knowledge of programs would
help compiler-assisted techniques to avoid such
a pitfall.

This observation suggests a better solution.
A hardware-based technique can be deployed
as the default power gating mechanism, since
generally it is very efficient in leakage re-
duction. However, a compiler would intervene
when its analysis identifies that the default
method might not be effective for certain ap-
plication programs. It could either reorganize
the code or adjust the parameters of the default
hardware mechanism. This study indicates that
better leakage reduction can be achieved by the
cooperation of hardware-based and compiler-
based approaches, and hence further compiler
research will be needed in order for a compiler
to determine when and how to intervene.

The rest of this paper is organized as fol-
lows. Section II portrays the architecture of the
target platform. Section III briefly describes the
compiler technique to embed and merge power-
gating instructions and Section IV outlines the
simple hardware-only implementation. Experi-
mental results will be presented in Section V,
and Section VI summarizes this paper and
discusses the future work.

II. M ACHINE ARCHITECTURE

The instruction set architecture targeted
by compiler-assisted techniques must support
power-gating control at the component level.
This paper focuses on reducing the power
consumption of certain components by invok-
ing power-gating technology. Power gating is
analogous to clock gating, except that devices
are powered off by switching off their supply
voltage rather than the clock. This can be
implemented by forcing transistors to be off
or using MTCMOS (multi-threshold voltage
CMOS technology) to increase the threshold
voltage [4], [12], [14], [22].

Program

Counter

Instruction Decoder

Instruction Bus (32bits)

Integer

ALU/Normal

Operation

Integer

Multiplier

Power-Gating Control Register (64 bits)

Floating-Point RegistersInteger Registers

Constant Supply

Voltage

Input/Output

(64 bits)

Floating Point

Divider

Floating Point

Multiplier

Floating Point

Adder

E Box

Micro Codes
3
2
b
its

F Box

P
C
+
4

...

...

P
C
-4

...

...

P
C
+
8

P
C

3

Fig. 1. DEC Alpha 21264 architecture with power-gating
support

Figure 1 illustrates an example of the target
machine architecture based on a DEC Alpha
21264 processor with an instruction fetch, is-
sue, and retire unit (Ibox), a block of integer
functional units (Ebox), a block of floating-
point functional units (Fbox), a memory ref-
erence unit (Mbox), and an external cache and
system interface unit (Cbox) [7].

In the adapted DEC Alpha 21264 architec-
ture model, the Ebox and Fbox were equipped
with power-gated functions. The power state of
each unit is controlled by the 64-bit integer
power-gating control register (PGCR). In this
case, one bit is used for the integer multiplier
unit and three bits are used for the floating-
point functional units. Setting the power-gating

bit true powers on the corresponding mod-
ule, and clearing the bit to zero powers off
the corresponding module immediately in the
following clock cycle. A new instruction was
implemented to control units with the power-
gated function by moving the appropriate value
from a general-purpose register to the PGCR.
The integer ALU unit is always powered on
since it takes the responsibility for moving data
to the PGCR.

III. C OMPILER-ASSISTEDPOWER-GATING

CONTROL PLACEMENT

This section reviews a compiler approach
that statically analyzes the activities of power-
gating candidates of the input programs and
inserts power-gating instructions at appropriate
positions with the consideration of code size
issues [29], [30], [28]. The proposed frame-
work, calledLeakage-Power-Reduction Frame-
work, is operated with three major phases:

(1) Component-Activity Data-Flow Analysis
(CADFA),
which estimates the activities of the
power-gating candidates within a given
program,

(2) Power-Gating Instruction Scheduling,
which determines whether, where, and
when power-gating controls should
be employed so as to reduce energy
dissipation, and

(3) Sink-N-Hoist Analysis, which attempts
to sink (postpone) power-off operations
and hoist (advance) power-on operations
for increasing the opportunity to merge
power-gating instructions into compound
instructions and thus reduce program
code size.

Figure 2 sketches the process scenarios, cor-
responding to the above three phases, of a
motivating example in the view of the com-
piler approach with the assumption that three
floating-point units (an arithmetic logic unit, a
multiplier, and a divider) are considered as the
power-gating candidates. Each plot of Figure 2

PowerOn FP_ALU

PowerOn FP_Mul.

PowerOff FP_Mul.

PowerOff FP_ALU

PowerOn FP_Div

PowerOff FP_Div.

PowerOn FP_ALU, FP_Mul., FP_Div.

PowerOff FP_ALU, FP_Mul., FP_Div.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU

FP ALU

FP Div.

FP Div.

FP Mul.

FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU FP Div.FP Mul.

FP ALU

FP ALU

FP Div.

FP Div.

FP Mul.

FP Mul.

T
im
e

Fig. 2. An example of power-gating controls over
floating-point (FP) units (the shaded components are those
in use)

shows the activities of the power-gating candi-
dates, represented as boxes, in the timeline and
also the placement of power-gating instructions.
The leftmost plot shows the activity information
produced by CADFA, where a shaded box rep-
resents a unit which is in use at that time, and is
simply the case without power-gating controls;
the middle plot shows the case when Power-
Gating Instruction Scheduling is applied; and
the rightmost one shows the case when Sink-
N-Hoist Analysis is involved.

Basically, the Leakage-Power-Reduction
Framework is performed with a set of data-
flow equations and the control-flow graph of
the input program. In CADFA,component-
activities, the activities (active or inactive)
of components, are propagated with union as
the meet operation. A component-activity is
generated at a block if a component is required
for processing and it is killed if the component
is released from the process. Once the activity
information of components has been obtained,
power-gating instructions can be inserted into
programs at the appropriate points (i.e., the
beginning and end of an inactive block) to
power off and on unused components so as to
reduce the leakage power. However, both shut-
down and wake-up procedures are associated
with an additional penalty, especially the
latter due to peak voltage requirements.
Power-Gating-Instruction Scheduling is then
performed and takes account of the influence
of conditional branches in programs — the
time required to instigate power-gating controls

on components is related to the number and
complexity of program branches. The process
seems to be done after the phase of Power-
Gating-Instruction Scheduling. However, there
are concerns about the amount of power-
control instructions being added to programs
with the increasing amount of power-gating
candidates in a system-on-a-chip (SoC) design
platform for embedded systems. Therefore,
Sink-N-Hoist Analysis was proposed to
generate balanced scheduling of power-gating
instructions.

The main idea of Sink-N-Hoist analysis is
to reduce the problem of too many instruc-
tions being added with code-motion techniques.
The approach attempts to merge several power-
gating instructions into one compound instruc-
tion by ‘sinking’ power-off instructions and
‘hoisting’ power-on instructions; that is, post-
poning the issuing of power-off instructions
and bringing forward the issuing of power-on
instructions. For instance, a power-off instruc-
tion can be postponed for several cycles to be
merged with adjacent power-off instructions.
This will result mainly in improvements to the
code size, but also in performance and en-
ergy via grouping effects. Similarly to CADFA,
Sink-N-Hoist Analysis is based on a set of data-
flow equations to collect the information for the
code motion of power-gating instructions, such
as the information of possible positions to issue
for each power-gating instruction and the infor-
mation which power-gating instructions should
be merged.

IV. H ARDWARE-ONLY APPROACH

This section recaps the time-based power
gating technique that is commonly deployed
by the hardware-only approach [12]. Instead
of executing explicit power-gating instructions,
hardware-only techniques rely on logic circuits
to detect the onsets and conclusions of suffi-
ciently long idle periods and then to power-
gate off/on functional units. The easiest way is
to turn off a functional unit after it is idle over
a certain number of cycles. Similar techniques

have been used for reducing leakage of caches
[10], [16].

Idle_detect

sleep

wakeup

busy

Idel_count > T_idledetect

Idel_count > T_breakeven ready_insn_detect

cycle_count > T_wakeup

uncompesated

Fig. 3. State Diagram (Adapted from Figure 5 in [12])

In order to model this tactic, a state diagram
shown in Figure 3 can be associated with every
functional unit. The idle detect state is the
normal, active state, when the functional unit is
ready for execution. A functional unit will be
power-gated off and enter theuncompensated
state after being idle for more thanTidledetect

cycles. If it is waked up during this state, it
will miss the break-even point as the overhead
of power-gating is greater than the leakage
reduction. By contrast, power-gating will save
leakage once the idle period lasts longer than
Tbreakeven, and the functional unit will enter the
compensated state. The longer the functional
unit stays in thecompensated state, the more
leakage power it will save. If an instruction
is ready for execution when its corresponding
functional unit is in thecompensated or uncom-
pensated state, the unit will move to thewakeup
state and stay there forTwakeup cycles before
entering the activeidle detect state.Twakeup is
the latency of powering up functional units.

According to the state diagram, the ef-
ficiency of the hardware-based power-gating
technique is determined by the three parame-
ters, Tidledetect, Tbreakeven, and Twakeup. The
first parameter,Tidledetect, determines how ag-
gressive the power-gating mechanism would be.
It is the only parameter among these three that
can be dynamically adjusted, since the other
two Tbreakeven andTwakeup are fixed once the

physical circuit design technique is chosen. A
small Tidledetect would identify more idle peri-
ods but it might cause performance degradation
if functional units have to be frequently turned
back on before the break-even point. On the
contrary, a largeTidledetect might miss many
opportunities to power-gate functional units.

Parameter Value

Clock 600 MHz
Process parameters0.10 µm, 1.9 V
Instruction issuing In-order
Decode width 8 instructions/cycle
Issue width 8 instructions/cycle
Commit width 8 instructions/cycle
RUU size 128
LSQ size 64
Functional units 4 integer ALUs

1 integer multiply/divide unit
4 FP ALUs
1 FP multiply/divide unit

Register files 32 64-bit integer registers
32 64-bit FP registers
1 64-bit power-gating

control register (PGCR)

TABLE I
BASELINE PROCESSOR CONFIGURATION

V. EXPERIMENTAL RESULTS

A. Setup

The target platform is a DEC-Alpha-
compatible architecture with the power-gating
controls and instruction shown in Figure 1,
and experiments are conducted on the Wattch
simulator with 0.10-µm process parameters and
1.9V VDD [3]. Table I summaries the base-
line configuration of the simulator. By default,
the simulator performed out-of-order execu-
tions. The ‘-issue:inorder’ option is used in
the configuration so that instructions would
be executed in order to ensure the correct-
ness of power-gating controls. Nevertheless, the
software-assisted method can also be applied
to out-of-order issue machines if the additional
hardware supports proposed in [30] are em-
ployed. The benchmarks used in this paper are
taken from the floating-point version of the

DSPstone benchmark suite [32]. The average
IPC (instructions per cycle) of the benchmarks
is 0.36 with the configuration in Table I.

Since Wattch does not model leakage at the
component level per se, this paper assumes that
leakage power makes up 10% of total power
consumption. Furthermore, each wake-up oper-
ation is assumed to have a 20-cycle latency (i.e.
Twakeup = 20 cycles) and to dissipate ten times
of the leakage power. Similarly, every turn-off
instruction consumes twice of normal leakage
energy. The energy consumption of fetching
and decoding a power-gating instruction was
assumed to be two times the leakage power. In
addition, normalized leakage of the target plat-
form will be computed relative to the leakage
measured on Wattchcc3 with only clock-gating
mechanism.

B. Performance Evaluation

This section will evaluate the performance
of four hardware-only power-gating configu-
rations, i.e.Tidledetect = 16, 48, 64, and 96
cycles, and two software-assisted power-gating
designs, namely CADFA and Sink-N-Hoist.

Leakage
Figure 4 illustrates that the normalized leak-

age of power-gated functional units for the
DSPstone benchmarks under the above vari-
ous software and hardware power-gating con-
figurations. Basically the hardware-only con-
figurations reduce much more leakage than
the software-assisted designs. On average the
hardware-only configurations lower the leakage
power down to about 10%, while the software-
assisted designs cut the leakage down to around
30%. However, CADFA and Sink-N-Hoist still
manage to outperform the hardware-only con-
figurations for the two benchmarksfir2dim

and matrix1, and only dissipate only about
half of leakage. The main reason is that in some
occasions hardware-only configurations might
be too eager or too lukewarm due to the lack
of global information of the programs, whereas

the compiler-based techniques tend to know
when to power-gate on/off functional units.

Power gating functional units incur over-
heads since turning off and on circuits do
take energy. The red portions of bars in the
figure denote such energy overheads, which are
reasonably small for all hardware and software
configurations. The hardware-only configura-
tions with small Tidledetect cycles introduce
smaller overheads than the hardware-only con-
figurations with largeTidledetect numbers. The
compiler-based approach usually suffers more
overheads than the hardware-only method for it
has to execute instructions explicitly to power-
gate functional units. However, such overheads
can be reduced by merging the power-gating
instructions, as shown by the result that Sink-
N-Hoist incurs much less penalty than CADFA.

Run Time Impact
Turning off/on functional units to reduce

leakage power will definitely incur perfor-
mance penalties since several to tens of cy-
cles are needed to power on/off circuits. Fig-
ure 5 shows the performance impact of the
various power-gating configurations. Hardware-
only implementations commonly suffer higher
performance degradation than compiler-based
techniques, especially for the configurations
with smallTidledetect numbers due to excessive
power-gating on/off activities. On average they
might slow down the execution of the DSP-
stone benchmarks by 10% to 20%. In contrast,
compiler-based designs incur only negligible
performance degradation, roughly 2% on av-
erage.

Figure 4 and Figure 5 reveal that hardware-
only configurations with reasonably large
Tidledetect cycles seem to be a favorable choice
as they can significantly reduce leakage without
incur considerable performance penalties.

Wakeup Latency
The hardware-only approach will be more

effective if the wakeup latencyTwakeup can

������������ ��������� ��

	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ������������ 	
 ��
�
 ����� ��������������� � !"� # $%� & ��� � !"#� ' ($! ��)* � # $%�) '� $ � + � '#�$, %+ -' %� , %+ %%+ . %/ # (' 01!�$%�) 1 %%+ . %/# ('�) ! 1!�$%�) � 1 � ($+ %" 2" 3 � ($+ %" 2) ��� � !"# � ' ($!1) + !(# � ' ($!1 + !(#� '($! 4*!+ (5 !

6 7 8 9 8 :7 ;< 7 => 7 8 ?

Fig. 4. Normalized Leakage Power

@A@ BC@A@ BD@A@ BE@A@ BF @A@ BG@A@ BH@A@ BI @A@ BJ@A@ BK@A@ B

LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂ LM NO MN PM QRSTR UVWXYWYZ[\]̂_`a b cdea f cghb ci _`a b cdef b j kgd _`l m ` cf gh`l j` g b n ` jf _g o hn pj ha o hn hhn q hr f kjs td_gh`l t hhn q hr f kj`ld td_gh`l ca t a kgn he ue v a kgn he u l _`a b cdefb j kgdt l n dkcf b jkgdt n dkc f b jkgd wmdn kx d
Fig. 5. Average Run Time Impact

yz{yz|yz}yz~ yz�yz�yz

�� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ������������ �� �� �� �� ����� ��������������� � ���� � ���� �� ��� � ����� � �� ��¡¢ � �� ���¡ �� � � £ � ���� ¤ �£ ¥� �� ¤ �£ ��£ ¦ �§ � � ¨©�����¡ © ��£ ¦ �§� ��¡ � ©�����¡ �� © � �£ �� ª� « � �£ �� ª ¡ ��� � ���� � � ��© ¡ £ � �� � � ��© £ � � �� � �� ¬¢�£ �

® ¯ ° ±° ²¯ ³´ ¯ µ¶ ¯ ° ·

Fig. 6. Normalized Leakage Power (Twakeup = 10 Cycles)

¸ ¹¸ º» ¹¸ º¼¸ ¹¸ º¼» ¹¸ º½¸ ¹¸ º½» ¹¸ º¾¸ ¹¸ º¾» ¹¸ º¿¸ ¹¸ º¿» ¹¸ º

ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆ ÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆ ÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒ ÀÁ ÂÃ ÁÂ ÄÁ ÅÆÇÈÆÉÊËÌÍËÍÎÏÐÑÒÓ ÔÕ Ö ×Ø ÙÕ Ú×Û ÜÖ×Ý Ó ÔÕ Ö×Ø ÙÚÖ Þß ÛØ Ó ÔàáÔ×ÚÛ ÜÔà ÞÔÛÖâÔÞÚÓ Û ãÜâ½ÞÜÕ ãÜâ ÜÜâäÜåÚ ß ÞæçØ Ó Û ÜÔà ç ÜÜâä ÜåÚß ÞÔàØçØ Ó Û ÜÔà ×Õ ç Õ ß ÛâÜÙ ¼Ù¾ Õ ß ÛâÜÙ ¼ àÓ ÔÕ Ö ×Ø ÙÚÖ Þß ÛØ ç à âØ ß ×ÚÖ Þß ÛØ ç âØ ß ×ÚÖÞß ÛØ èá Ø âß éØ
Fig. 7. Average Run Time Impact (Twakeup = 10 Cycles)

be reduced. Figure 6 and Figure 7 show the
effects of cutting the wakeup latency by half
to 10 cycles. Leakage and runtime impact can
be further reduced as functional units sit idle
for fewer cycles waiting for their circuits to be
powered back on.

VI. SUMMARIES AND FUTURE WORK

This paper compares the efficiencies of
hardware- and compiler-based techniques for
power gating of functional units. A straightfor-
ward implementation of hardware power gat-
ing mechanism is compared with a system
that runs programs with compiler-embedded
on/off instructions. Experimental results of the
DSPstone benchmarks on Wattch show that
the hardware-only approach generally performs
better than the compiler-based method, but
compiler-based approach still manages to out-
perform in some occasions. This outcome
reveals that hardware-only techniques might
generate excessive on/off activities when the
program executions do not fit the pattern,
while global knowledge of programs would
help compiler-based techniques to avoid such
a pitfall. This observation suggests a combi-
nation of hardware-based and compiler-based
approaches: a hardware-based technique can be
deployed as the default power gating mech-
anism, and a compiler would intervene only
when its analysis indicates the default method
is inferior for certain application programs.

A compiler now has to take the responsi-
bility of determining if the default hardware
mechanism might inappropriately turn on and
off functional units. If could adjust the pa-
rameters of the default mechanism, or even
reorganize the instructions when adjusting pa-
rameters alone would not be enough. There is
an on-going project here that studies how to
perform analysis on the binary executable codes
of application programs in order to decide if
the compiler should intervene. In addition, this
project also investigates how the object codes
can be reorganized to fully exploit the default
power gating mechanism.

REFERENCES

[1] Nikolaos Bellas, Ibrahim N. Hajj, and Constan-
tine D. Polychronopoulos. Architectural and com-
piler techniques for energy reduction in high-
performance microprocessors.IEEE Transactions on
Very Large Scale Integration Systems, 8(3):317–326,
June 2000.

[2] Shekhar Borkar. Design challenges of technology
scaling. IEEE Micro, 19(4):23–29, 1999.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. InProceedings of the International
Symposium on Computer Architecture, pages 83–94,
Vancouver, Canada, June 2000.

[4] J. Adam Butts and Gurindar S. Sohi. A static
power model for architects. InProceedings of
the Annual IEEE/ACM International Symposium on
Microarchitecture, pages 191–201, Monterey, Cali-
fornia, December 2000.

[5] Anantha P. Chandrakasan, Samuel Sheng, and
Robert W. Brodersen. Low-power CMOS digi-
tal design. IEEE Journal of Solid-State Circuits,
27(4):473–484, 1992.

[6] Jui-Ming Chang and Massoud Pedram. Register al-
location and binding for low power. InProceedings
of the Design Automaton Conference, pages 29–35,
San Francisco, California, USA, June 1995.

[7] Compaq Computer Corporation.Alpha 21264 Mi-
croprocessor Hardware Reference Manual. 1999.

[8] Brian Doyle, Reza Arghavani, Doug Barlage, Suman
Datta, Mark Doczy, Jack Kavalieros, Anand Murthy,
and Robert Chau. Transistor elements for 30nm
physical gate lengths and beyond.Intel Technology
Journal, 6(2):42–54, May 2002.

[9] Steven Dropsho, Volkan Kursun, David H. Al-
bonesi, Sandhya Dwarkadas, and Eby G. Friedman.
Managing static leakage energy in microprocessor
functional units. InProceedings of the 35th In-
ternational Symposium on Microarchitecture (MI-
CRO’02), pages 321–332, Istanbul, Turkey, Novem-
ber 2002.

[10] Krisztian Flautner, Nam Sung Kim, Steve Martin,
David Blaauw, and Trevor Mudge. Drowsy caches:
simple techniques for reducing leakage power. In
Proceedings of the 29th Annual International Sym-
posium on Computer Architecture, pages 148–157,
2002.

[11] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-
power digital design. InProceedings of the IEEE
Symposium on Low Power Electronics, pages 8–11,
San Diego, California, USA, October 1994.

[12] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan,
Victor Zyuban, Hans Jacobson, and Pradip Bose.
Microarchitectural techniques for power gating of
execution units. InProceedings of the 2004 Inter-
national Symposium on Low Power Electronics and

Design (ISLPED’04), pages 32–37, Newport Beach,
California, USA, August 2004.

[13] Robert Jones. Modeling and design
techniques reduce 90 nm power. EE Times
08/06/2004, 2004. Available online at
http://www.eetimes.com/showArticle.jhtml?articleID
=26806450.

[14] J. T. Kao and A. P. Chandrakasan. Dual-threshold
voltage techniques for low-power digital circuits.
IEEE Journal of Solid-State Circuits, 35(7):1009–
1018, 2000.

[15] Tanay Karnik, Shekhar Borkar, and Vivek De. Sub-
90nm technologies – challenges and opportunities
for CAD. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD’02),
pages 203–206, San Jose, California, USA, Novem-
ber 2002.

[16] Stefanos Kaxiras, Zhigang Hu, and Margaret
Martonosi. Cache decay: exploiting generational
behavior to reduce cache leakage. InProceedings
of the 28th annual International Symposium on
Computer Architecture, pages 240–251, 2001.

[17] Nam Sung Kim, Todd Austin, David Blaauw,
Trevor Mudge, Krisztian Flautner, Jie S. Hu,
Mary Jane Irwin, Mahmut Kandemir, and Vijaykr-
ishnan Narayanan. Leakage current: Moore’s law
meets static power.IEEE Computer, 36(12):68–75,
2003.

[18] Nam Sung Kim, Krisztian Flautner, David Blaauw,
and Trevor Mudge. Circuit and microarchitectural
techniques for reducing cache leakage power.IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 12(2):167–184, February 2004.

[19] Chingren Lee, Jenq Kuen Lee, Ting-Ting Hwang,
and Shi-Chun Tsai. Compiler optimizations on
VLIW instruction scheduling for low power.ACM
Transactions on Design Automation of Electronic
Systems, 8(2):252–268, 2003.

[20] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik,
and Masahiro Fujita. Power analysis and mini-
mization techniques for embedded DSP software.
IEEE Transactions on Very Large Scale Integration
Systems, 5(1):123–133, March 1997.

[21] Siddharth Rele, Santosh Pande, Soner Onder, and
Rajiv Gupta. Optimizing static power dissipation
by functional units in superscalar processors. In
Proceedings of the 11th International Conference
on Compiler Construction (CC’02), pages 261–275,
Grenoble, France, April 2002.

[22] K. Roy and S. C. Prasad. SYCLOP: Synthesis
of CMOS logic for low power applications. In
Proceedings of the IEEE International Conference
on Computer Design, pages 464–467, Cambridge,
Massachusetts, USA, October 1992.

[23] Semiconductor Industry Association. International
technology roadmap for semiconductors. 2004.

[24] Ching-Long Su and Alvin M. Despain. Cache
designs for energy efficiency. InProceedings of

the 28th Annual Hawaii International Conference
on System Sciences, pages 306–315, Los Angeles,
California, USA, January 1995.

[25] V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez.
Dynamic power management for microprocessors: A
case study. InProceedings of the International Con-
ference on VLSI Design, pages 185–192, Hyderabad,
India, January 1997.

[26] V. Tiwari, D.Singh, S. Rajgopal, G. Mehta, R. Patel,
and F. Baez. Reducing power in high-performance
microprocessors. InProceedings of the Design Au-
tomaton Conference, pages 732–737, San Francisco,
California, USA, June 1998.

[27] Hongbo Yang, R. Govindarajan, Guang R. Gao,
George Cai, and Ziang Hu. Exploiting schedule
slacks for rate-optimal power-minimum software
pipelining. In Proceedings of the 3rd workshop on
Compilers and Operating Systems for Low Power
(COLP’02), Charlottesville, Virginia, USA, Septem-
ber 2002.

[28] Yi-Ping You, Chung-Wen Huang, and Jenq Kuen
Lee. A sink-n-hoist framework for leakage power
reduction. InProceedings of the ACM International
Conference on Embedded Software (EMSOFT’05),
pages 124–133, 2005.

[29] Yi-Ping You, Chingren Lee, and Jenq Kuen Lee.
Compiler analysis and supports for leakage power
reduction on microprocessors. InProceedings of the
International Workshop on Languages and Compil-
ers for Parallel Computing (LCPC’02), pages 63–
73, Washington, D.C., USA, July 2002. Lecture
Notes in Computer Science, Vol. 2481, Springer
Verlag.

[30] Yi-Ping You, Chingren Lee, and Jenq Kuen Lee.
Compilers for leakage power reduction.ACM Trans-
actions on Design Automation of Electronic Systems,
11(1):147–164, January 2006.

[31] W. Zhang, Mahmut T. Kandemir, Narayanan Vi-
jaykrishnan, Mary Jane Irwin, and V. De. Compiler
support for reducing leakage energy consumption.
In Proceedings of the 6th Design Automation and
Test in Europe Conference (DATE’03), pages 1146–
1147, Messe Munich, Germany, March 2003.

[32] V. Zivojnovic, J. Martinez, C. Schlager, and
H. Meyr. DSPstone: A DSP-oriented benchmarking
methodology. InProceedings of the International
Conference on Signal Processing and Technology
(ICSPAT’94), pages 715–720, Dallas, Texas, USA,
October 1994.

