
Journal of Signal Processing Systems 51, 269–288, 2008

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0059-4

Effective Code Generation for Distributed and Ping-Pong Register Files:

A Case Study on PAC VLIW DSP Cores

YUNG-CHIA LIN, CHIA HAN LU, CHUNG-JU WU, CHUNG-LIN TANG, YI-PING YOU,

YA-CHAIO MOO AND JENQ-KUEN LEE

Department of Computer Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan

Received: 15 September 2006; Revised: 17 February 2007; Accepted: 20 February 2007

Abstract. The compiler is generally regarded as the most important software component that supports a

processor design to achieve success. This paper describes our application of the open research compiler

infrastructure to a novel VLIW DSP (known as the PAC DSP core) and the specific design of code generation

for its register file architecture. The PAC DSP utilizes port-restricted, distributed, and partitioned register file

structures in addition to a heterogeneous clustered data-path architecture to attain low power consumption and a

smaller die. As part of an effort to overcome the new challenges of code generation for the PAC DSP, we have

developed a new register allocation scheme and other retargeting optimization phases that allow the effective

generation of high quality code. Our preliminary experimental results indicate that our developed compiler can

efficiently utilize the features of the specific register file architectures in the PAC DSP. Our experiences in

designing compiler support for the PAC VLIW DSP with irregular resource constraints may also be of interest

to those involved in developing compilers for similar architectures.

Keywords: compiler, ping-pong register files, VLIW, DSP, clustering, parallel processing

1. Introduction

Optimizing compiler development has always been

the key factor in building a productive environment

for new embedded processors and SOC chips. High-

end embedded processor design is moving toward

the intensive exploitation of instruction-level paral-

lelism (ILP) and the incorporation of many advanced

application-specific features, with the resulting im-

mense increase in the complexity of compilers for

these advanced processors demanding increased long-

term development efforts and manpower. Hence,

designing code-generation supports and optimizations

based on open-source compiler infrastructures—rather

than developing everything from scratch—are becom-

ing common in attempts to reduce the delivery time of

the compiler for a newly designed processor.

Several open-source compiler infrastructures have

been used in research and practical applications, such

as SUIF [1], Impact [2]/Trimaran [3], Zephyr [4], the

popular GNU GCC [5], and the recent Open

Research Compiler (ORC) [6]. The SUIF compiler

infrastructure forms the major part of the National

Compiler Infrastructure (NCI) project, which is

focused on providing a general compiler platform

to support collaborative compiler research at the

intermediate-representation (IR) level. The Zephyr

infrastructure constitutes the other important part of

the NCI project, which primarily aims to develop
This paper is being submitted to the Journal of VLSI Signal

Processing Systems for Signal, Image, and Video Technology.

portable low-level optimizations at the instruction

level for compiler research. The IMPACT/Trimaran

compiler infrastructures have been developed mainly

to support advanced ILP research, and also to

support research related to architectural issues

through HPL-PD architecture models and MDES

machine description interfaces. In addition to the

above compilers, which are used chiefly in research,

GCC is also suitable for use in practical applications,

and is available for more than 100 hardware plat-

forms. However, GCC has great difficulty in coping

with modern ILP features due to its IR design and

compiler structure. The recent development of the

ORC has increased the momentum for supporting

ILP in modern architectures, and this compiler is

highly capable in supporting stable code generation

in both research and practical applications.

ORC is an open-source compiler infrastructure

released by Intel that represents the successor of

Pro64 [7], which is the open-source compiler project

for the IA-64 processor created by SGI in May 2000.

Since the Pro64 originally evolved from the com-

mercial SGI MIPSPro compiler suite that had been

developed over a long period by SGI as one of the

best optimized development tools known for any

platform, ORC has incorporated most of the industry-

strength optimization techniques developed to date.

The ORC is expected to act as a stable base

infrastructure for further research works, including

the support for new target processors in the future. In

addition, the ORC has already achieved an excellent

porting status for the IA-64 processor, enabling the

compiler to generate codes with good performance by

utilizing several advantages of the EPIC/VLIW

architecture. As modern VLIW DSPs similarly incor-

porate many advanced architecture features, it is of

considerable interest to explore the possible deploy-

ment of ORC in VLIW DSPs.

In this paper, we describe the issues involved in

applying the ORC infrastructure to VLIW DSPs with

port-restricted, distributed, and partitioned register

file structures. We present our experiences in the

development of code generation and optimization

design for a novel 32-bit VLIW DSP designed with

several new architecture features, in particular for

the effective support for the distributed and so called

ping-pong register files [8, 9]. The target processor,

named the Parallel Architecture Core (PAC) DSP

[10–13], is being developed from scratch by SOC

Technology Center at Industrial Technology Research

Institute in Taiwan. The PACDSP is natively designed

to meet multimedia high-performance computing

requirements and the low power consumption

demanded by mobile systems. We propose effective

register allocation policies in the compiler framework

to support the register file organizations that are

specific to PAC architectures, peephole optimization

for the architecture, and essential modeling for the

architecture to support loop nest optimization. More-

over, we reveal the steps employed in our development

work on top of the ORC infrastructure for the PAC

DSP. This paper also presents essential compiler

supports for heterogeneous clustered VLIW architec-

tures with port-restricted, distinct partitioned register

file structures, which may also be of interested to those

involved in developing compilers for novel VLIW

DSPs with similar architectures.

The remainder of this paper is organized as

follows. Section 2 introduces the target architecture

of the PAC DSP, and Section 3 describes the

associated compilation challenges. The development

of code generation and preliminary optimizations for

the PAC DSP, including the specific design for the

architecture, are presented in Section 4. Experimen-

tal results from preliminary evaluations are then

illustrated in Section 5. Finally, Section 6 draws

conclusions related to this work.

2. PAC DSP Architectures

The PACDSP is a 32-bit, fixed-point, VLIWDSP core

that can be used as a core-component in a multicore

SOC platform (such as the DaVanci system solutions

of Texas Instruments [14]) to support high-perfor-

mance multimedia processing, or employed as stand-

alone solutions for any DSP system. The PAC DSP

features an original clustered VLIW architecture that

boosts scalability, a feature-rich instruction set with

SIMD operation support, a variable-length-instruction

encoding scheme, and a large number of registers that

are innovatively heterogeneously arranged in the

highly distributed register file structures.

Being unlike symmetric architectures of most

current DSPs, the PAC DSP core is constructed as

a heterogeneous five-way-issue VLIW architecture,

comprising two integer ALUs (I-unit), two memory

load/store units (M-unit), and a program sequence

control unit/scalar unit (B-unit) that is mainly in

charge of control flow instructions such as branch

and jump. The M- and I-units are organized in pairs,

270 Lin et al.

with each pair containing one M-unit and one I-unit

to form a cluster arrangement with associated reg-

ister files. It is apparent that each cluster is logically

appropriate for processing a single data stream, and

the current design of the PAC DSP consists of two

clusters that therefore support a maximum workload

capacity of two concurrent data streams. However,

the scalability of the cluster design makes it easy for

future PAC DSP processors to involve more clusters

to handle larger data processing workloads. The B-

unit consists of two subcomponents—the program

sequence control unit and the scalar unit—due to the

hierarchical decoder design for variable-length-in-

struction encoding in the PAC DSP. The program

sequence control unit is primarily responsible for

control flow instructions, and the scalar unit, which is

capable of simple load/store and address arithmetic, is

separated from data stream processing clusters, and

has its own register file. The overall architecture is

illustrated in Fig. 1.

Figure 1 shows that registers in the PAC DSP are

organized into four distinct partitioned register files

and are arranged as cluster structures, which reduces

the wire connections between functional units and

registers and thereby decreases the chip area and

power consumption. The A, AC, and R register files

are private registers that are directly attached to and

only accessible by the M-, I-, and B-units, respec-

tively; the D register files are shared within a cluster

and can be used to communicate between the paired

M- and I-units. The internal structure of the D

register file is further designed to utilize a special

port-switching technology that further reduces the

wire connections between the shared functional

units. The technology—ping-pong register file struc-

ture—involves dividing a single register file into two

banks, where each bank can only be accessed by one

of the functional units at any one time. The instruc-

tion bundle encoding contains the information that

could be set to direct which bank is to be accessed by

each functional unit, so that the hardware can

perform port switching between register file banks

and functional units to implement data sharing

within a cluster. The access states of read ports and

write ports in a D register file are additionally

designed to use the separate port-switching settings

to increase the flexibility. The advantage of the ping-

pong register file structure design is that the area size

and access time could be decreased due to the

reduced read/write ports [15, 16] while retaining an

effective data communication capability. The regis-

ter file structure inside a data stream cluster is

illustrated in Fig. 2. Furthermore, a unique design

is employed in the PAC DSP to allow the intercluster

communication to be processed by the internal data-

routing paths in the memory interface unit which

connects with all B- and M-units. To transfer data

between the two clusters, or between a cluster and

the B-unit, programmers need to use a paired

instructions (Bbdt^ and Bbdr^) in the same bundle

to inform one of the units to send the data and the

other to receive them. This mechanism simplifies the

implementation of intercluster communication com-

Figure 1. PAC DSP architecture.

Figure 2. Distinct partitioned register file organization in a

cluster.

Code Generation for Distributed and Ping-Pong Register Files 271

pared to other existing schemes [17], providing

further reduction of area size and access time [9].

The overall design of the distributed and ping-pong

register file organizations adopted by the PAC DSP

could decrease 76.8% of silicon area and 46.9% of

access time compared to a centralized architecture

with the equivalent number of registers.

3. Code-Generation Issues with PAC DSP

Architectures

The PAC DSP incorporates various leading-edge

architecture features in an attempt to increase the

performance and reduce the hardware cost and

power consumption. However, this design increase

the interference between valid code generation, in-

struction scheduling, and register allocation than

typical VLIW architectures, which impacts on

optimizing the code for performance, size, and

power consumption.

One of the most significant issues is caused by the

ping-pong register file structure. As mentioned in

Section 2, the PAC DSP features a heterogeneous

and distributed register file design with irregular port

access constraints (see Figs. 1 and 2). Each cluster

inside the architecture contains A and AC register

files, which is directly connected to the M- and I-

units, respectively, and one D register file. Each D

register file is divided into two banks that share a

single set of access ports connecting to the M- and I-

units; in each VLIW instruction bundle, there is a bit

field that controls the access ports to be switched

between the D register banks and the two functional

units in each cluster. In other words, if the M-unit is

accessing the first bank of the D register file, then the I-

unit can only access the second bank in the same cycle,

and vice versa—accesses from two functional units to

the same D register bank are mutually exclusive in a

cycle. In addition, each functional unit in the PACDSP

has a different set of instructions that could be

executed, and each instruction has its own register-

access constraints. All of these irregular designs

increase the challenge of generating effective and

optimized code. Conventional instruction scheduling

policies and register allocation strategies are seldom

applicable to code generation for the PAC DSP

architecture. For example, the short code sequence

mov TN1, 1

mov TN2, 2

add TN3, TN1, TN2

moves two constants into two virtual registers,

TN1 and TN2, and then performs an arithmetic

operation on them. The first two instructions can be

scheduled in parallel only if TN1 and TN2 are

registers allocated to distinct D register banks; if

both are assigned to the same D register bank, they

can only be scheduled and issued sequentially. But

the ping-pong register file structure more than simply

limits the parallelism in the instruction scheduling.

The above example is complicated by the third

instruction: since this refers to both TN1 and TN2,

which are the results of the first two instructions,

TN1 and TN2 must be in the register-access range of

the last instruction. Referring to Fig. 3, without

considering other hazards, parallelizing the first two

instructions requires a copy instruction to be inserted

before the last instruction if TN1 and TN2 are

allocated to different D register banks. Therefore, the

advantage of parallelizing the first two instructions is

counteracted by the insertion of the additional copy

Figure 3. Interference caused by the ping-pong register file structure.

272 Lin et al.

instruction and the associated increase in the size of

the generated code compared to when both TN1 and

TN2 are allocated to the same D register bank. But

allocating virtual registers to the same D register

bank will always increase register pressure of that

bank, and register spilling from different register

files in the PAC DSP architecture will alter the cost

incurred because the memory access is restricted to

only B- and M-units. These various code-generation

issues have unpredictable combined effects. We

know of no previous method that can be applied to

the PAC DSP to obtain the optimal result before

finalizing the instruction scheduling and the register

allocation of all codes, making it imperative to

develop new compiler schemes that can effectively

handle the issues caused by the innovative architec-

ture of the PAC DSP.

Register allocation also critically interferes with

both instruction scheduling and code generation

during the implementation of data communication

across clusters in the PAC DSP architecture. The

current version of the PAC DSP requires the code to

explicitly issue a pair of instructions to complete the

data communication between clusters. The paired

communication instructions not only need to be issued

by two of the M- and B-units with occupying two

slots in the same instruction bundle, but also introduce

penalties from the additional data-dependency and

data-available latency for any scheduled code that is

distributed into multiple clusters. Figure 4 illustrates

two possible code distributions with the same perfor-

mance for two clusters (considering all major con-

straints for scheduling), which each have their own

benefits. The example shows the common code

sequence generated from a dot-product operation of

two vectors. To schedule the code in parallel, it is

typical for compilers trying to utilize all available

functional units; hence the two critical multiply

instructions in this example should be scheduled into

the two different I-units since there is no data depen-

dence between them. The result of optimizing such

code scheduling with register allocation is showed in

the upper-right part of Fig. 4. Considering the various

functional-unit capabilities and hardware constraints

in the PAC DSP, the performance of this parallel

scheduling is limited to ten cycles, which is the same

as the result from sequentially scheduling the two

multiply instructions into the same I-unit, as shown in

the bottom-right part of Fig. 4. While it requires

issuing two more instructions for extra data commu-

nication between B- and M-units in the latter case, the

result may still benefit the power consumption

because the PAC DSP could shutdown the I-unit

using power-gating/clock-gating technologies. This

kind of trade-off increases the difficulty of optimizing

code generation since the design of PAC DSP mainly

targets the embedded-system products. Furthermore,

it appears that the compiler for the PAC DSP needs to

perform a thorough evaluation before distributing the

generated code into two clusters to avoid the penalty

Figure 4. Example of generating optimal scheduled codes across clusters.

Code Generation for Distributed and Ping-Pong Register Files 273

of cross-cluster communication undermining the

advantages of the parallelism of two clusters; how-

ever, the evaluation becomes more complicated and

nondeterministic with the interference associated with

the ping-pong register file structure. This increases the

challenge if constructing a good compiler for the PAC

DSP architecture. Table 1 summarize the currently

considered interference inherent in the PAC DSP

compiler design.

4. Effective Compiler Supports for PAC

DSP Cores

We now describe our work in developing compiler

supports for the PAC DSP architecture. Our compiler

prototype is based on the ORC infrastructure, which

is constructed by modularized components that are

ideal for incorporating incremental development

achievements and optimization improvements into

the compiler framework. In brief, the ORC compi-

lation procedure begins with front-end processing,

generating a machine-independent intermediate rep-

resentation (WHIRL [18] IR) of the source program,

and then feeding this into the back-end. Since the

WHIRL IR has five levels of representation, the

back-end will invokes several components to per-

form a series of lowering processes and optimiza-

tions on the WHIRL IR before transforming it into

the CGIR, which is a target-specific low-level IR that

is near to the real instruction representation. The

components developed for optimizations that could

optionally be activated at the WHIRL IR level

include the interprocedural analysis/optimizer

(IPA), loop nest optimizer (LNO), and WHIRL opti-

mizer (WOPT). The IPA in ORC analyzes the pro-

gram information across several source files, and

performs the following optimizations: dead function

elimination, interprocedural constant propagation,

and memory disambiguation for precise alias analy-

sis. The LNO, which is one of our prioritized

working items, is based on a cost model of code

generation in the Instruction Set Architecture (ISA)

of the PAC DSP. It is designed to perform opti-

mizations related to locality, parallelization, and

loop transformation, including the most well known

loop optimizations, such as loop peeling, loop tiling,

vector data prefetching, loop fission, loop fusion,

loop unrolling, and loop interchange. The WOPT

performs the major classical optimizations: common

subexpression elimination, loop invariant code mo-

tion, strength reduction, code hoisting, redundancy

elimination (partial and full), register promotion, and

partial dead store elimination.

After the WHIRL-level processing, the back-end

invokes the code generator to transform the WHIRL

IR into the CGIR. In addition to register allocation,

compilation modules may be activated to process the

CGIR depending on the code optimization level

before the final codes are emitted. Figure 5 illustrates

how we have extended the PAC compiler phases to

include several new optimization/analysis modules

that may benefit PAC DSPs. Many of these new

phases are based on our previous research, and we are

currently in the process of integrating those technolo-

gies into this infrastructure, including low-power

optimizations [19–21] advanced pointer analysis/opti-

mizations [22, 23], and DSP-specific optimizations

[24]. Since the design of the PAC DSP architecture is

still being improved progressively, our development

of compiler support and optimization for the PAC

DSP represents an ongoing effort, with this paper

focusing on supporting basic ORC infrastructures for

PAC VLIW DSPs. We mainly present the phases (see

the thick bordered blocks in Fig. 5) required to

generate effective code with essential optimizations

at the basic-block level, and the target-dependent

modifications on the LNO.

4.1. Code Generation with Target Information
Extension

The target information table (TARG_INFO) in ORC

is crucial to supporting the code generation, by

providing parameterized data about the architecture

and the ISA of the target processor. In this section

we present our adaptation from the IA-64 processor

Table 1. Major interferences in the code compilation for the

PAC DSP architecture.

Code generation Code scheduling Register allocation

Instruction

selection

Execution unit

constraints

Register bank

assignment

Communication

insertion

Register access

constraints

Register pressure

Instruction latency Spill code

variations

Bundling

constraints

274 Lin et al.

to the PAC DSP and the improvement of the

TARG_INFO to support more flexible CGIR-level

processing and optimizations for the PAC DSP

architecture. The original TARG_INFO is written

in the constructs of the C programming language,

and then they are used to generate the actual source

files of the TARG_INFO library. The machine

parameters described in the TARG_INFO library

are referred to in the codes of almost all CGIR-level

components after the WHIRL-to-CGIR expansion

phase; they are used to abstract the target-machine-

dependent information and are distinguished from the

compiler’s algorithms so as to reduce the effort of

constructing compilers for different target machines.

There are three categories in TARG_INFO: ISA,

Application Binary Interface (ABI), and miscella-

neous processor-related descriptions (PROC).The

ISA descriptions comprise the following:

– Registers: sizes, classes, supported types, and

usages of special registers.

– Literals: sizes, ranges, and excluded bits.

– Instructions: opcodes, operands, attributes, bun-

dles, assembly format, and object code.

– Resources: functional units and busses.

To conform to the PAC architecture and minimize

the complexity of instruction scheduling and register

allocation, those instructions available to more than

one functional unit are defined as being distinct in

different function units in the ISA descriptions. That

is, the register allocation range can be determined by

the instruction used so as to clarify the register file

accessibility in the implementation of register allo-

cators. Since the PAC DSP processor has two clusters

with no shared register files, special-purpose registers

that should be treated as always available to all

operations (e.g., stack pointer, frame pointer, and

global pointer) are defined in both clusters, and the

code generation must allow for duplication of the

content of these registers to meet calling conventions.

This is not possible by altering the machine descrip-

tions, instead requiring some hard-coded modifica-

tions to the core routines of code generator. Moreover,

to overcome the disadvantage of the functional-unit-

bound instruction definition, we design new descrip-

tions that can assist the CGIR-level phases in choosing

the appropriate instruction in different units to

implement the same semantics. The hazard descrip-

tions and handler functions in original TARG_INFO

are also fully redesigned to manipulate multiple

PAC code generator

SIMD & DSP Optimizations

Loop Optimization

Lowering & Code Selection & Intrinsics

WHIRL-level Optimizers (IPA, WOPT, LNO, …)

Global Scheduling

Pre-LRA EBO Peephole Optimization

Code Emission

T
arget Info

.

Cluster-aware GRA

Local Instruction Scheduling

Assembly Files

Hyperblock Formation & If-Conversion

Low-Power Optimization

Post-LRA EBO Peephole Optimization

PALF-LRA

SWP

SA-LRA

New Phases for
PAC

Architecture

Specifically
Tuned for PAC

Architecture

Ported for
Target

Dependency

Front-end

Source Files

PAC code generator

SIMD & DSP Optimizations

Loop Optimization

Lowering & Code Selection & Intrinsics

WHIRL-level Optimizers (IPA, WOPT, LNO, …)

Global Scheduling

Pre-LRA EBO Peephole Optimization

Code Emission

T
arget Info

.

Cluster-aware GRA

Local Instruction Scheduling

Assembly Files

Hyperblock Formation & If-Conversion

Low-Power Optimization

Post-LRA EBO Peephole Optimization

PALF-LRA

SWP

SA-LRA

New Phases for
PAC

Architecture

Specifically
Tuned for PAC

Architecture

Ported for
Target

Dependency

Front-end

Source Files

Figure 5. The refinement of compiler code generation phases for PAC DSP processors.

Code Generation for Distributed and Ping-Pong Register Files 275

hazards of multiple single instructions, because the

constraints of the PAC DSP are more complicated

than the original IA-64 processor architecture.

The main code-generation phase begins with trans-

forming the codes from the Bvery-low WHIRL^ form

into CGIR operations, which are then mapped into

instructions for the target processor. This is achieved

using a set of programmer-provided callback func-

tions to select the target-dependent CGIR operations.

The style of the interface is like FExp_OP_, which
expands an inputted WHIRL operation into a list of

CGIR operations that are appended to the provided

operation list. Thus, when the code generator locates a

particular WHIRL operation, it invokes the corres-

ponding code-expansion function and then builds the

CGIR operation lists as the WHIRL IR is traversed.

The code generator generates program control struc-

tures as separate basic blocks. By combining the

code-expansion functions and basic blocks, the

generated CGIR operation lists can be further opti-

mized by machine-dependent optimizers.

The further adaptation of the WHIRL-to-CGIR

code-generation functions includes designing the

selection of optimal instructions, which depends on

the optimization policies to produce preferred CGIR

operations for the PAC DSP architecture, and

implementing the specific handler for the PAC DSP

architecture deficiency in generating correct code to

follow C language conventions. For example, param-

eters are typically passed to functions through a

register stack or rotating registers, and since the PAC

DSP does not support a shared register stack and

convenient register-passing mechanisms, the param-

eter passing mechanism in the code-generation part

must be redesigned to employ a run-time memory

stack. Furthermore, other features in the IA-64 pro-

cessor not found in the PAC DSP, such as control and

data speculation, need to be identified and dealt with.

Another example is floating-point operations: the PAC

DSP has no hardware floating-point support, and so we

adopted the SoftFloat library [25] to simulate IEEE

binary floating-point arithmetic through the intrinsic-

call interface in the ORC infrastructure.

4.2. Optimizing Register Allocation and Instruction
Scheduling

The rationale of the highly partitioned register file

design of the PAC DSP is, of course, to reduce the

register file port counts in order to avoid the slow

access speed and high power consumption of a uni-

fied register file, although this is at the expense of an

irregular architecture. This design results in phase

interaction between register allocation and instruc-

tion scheduling becoming a critical problem in the

code generation. Not only does the clustered design

also make register access across clusters an issue, but

the switched-access nature of the ping-pong register

files makes register-file assignment (RFA) and

instruction scheduling interdependent, as shown in

Section 3.

Our current proposed solution to this problem is to

add a new RFA phase before register allocation. In

the current compilation flow, three kinds of RFA/

register allocation schemes are developed to provide

more opportunity for optimizing code than the

primitive design of code generation [26]. The first

scheme proposed is to optimize RFA using simulated
annealing (SA) [27, 28]. The design extends that of

Leupers [29] and our initial implementation [26],

using a combined instruction scheduling/cluster as-

signment algorithm to iteratively approach the near-

optimal result. In brief, the algorithm operates by

first generating a random cluster partitioning of in-

structions, and a modified list scheduler (LS) then

schedules the partitioned instructions whilst insert-

ing/managing cross-cluster communications.The

subsequent iterations involve random changes to

the partitioning state and rerunning of the LS. The

LS returns the obtained schedule length of the in-

structions as the Benergy^ value used in a usual SA

optimization process, representing an evaluation of

the current partitioning state. Depending on whether

a random change results in improvement or deteri-

oration, it will be retained or discarded. This process

is iterated until the energy/evaluation falls to below a

threshold at which we are confident that the obtained

optimization state is of sufficient quality.

Adapting this SA solution for the PAC DSP

involves changes to the formulation of optimized

state: our search is for RFAs in the chosen schematic

placement (as the search space) for virtual registers,

instead of the original bipartitioning of the instruc-

tions. Figure 6 gives the high-level SA algorithm,

which controls the scheduler, performs fine-grain

sequencing of operations, and returns the schedule

length as the evaluation of the current optimization

state. The two optional procedures in the algorithm

allow the compiler to dynamically control the

iteration scale and limit the register file usage in

276 Lin et al.

accordance with other optimizations, and may also

increase the overall speed of register allocation.

Figure 7 provides more details of the scheduler

algorithms. In general, the overall operation of the

algorithm is to proceed through the state space,

making changes according to the feedback obtained

from the LS. The output of the RFA will improve

progressively during the SA iterations, in terms of the

schedulable length of the instructions. Lastly, a final

register allocator is run to allocate and assign hardware

registers, guided by the RFAs (i.e., RFA map).
The second scheme developed for optimizing

RFA/register allocation is using a heuristic named

as PALF (ping-pong aware local favorable), which is

proposed in our previous work [30]. This heuristic

determines RFA using the associated data-dependen-

cy graphs and graph-partitioning methods, with

several assignment policies to better utilize the

distributed and ping-pong register file architectures.

This scheme could provide a comparable result of

code generation to the SA-based approach.

The last one—a hybrid optimization scheme with

both the PALF and SA heuristics - is proposed to

further improve the performance of the generated

code. In contrast to the pure SA-based scheme in

which we make the initial RFA based on a random

assignment, this method instead uses the PALF

heuristic to obtain a better RFA as the initial one,

providing more chances to result in the most improve-

ment in the end. Since the SA requires to be processed

within a limited iterations (controlled by threshold), an
appropriate initial RFA usually ensures a good result.

4.3. PAC-aware Peephole Optimizers

The Extended Block Optimizer (EBO) is a peephole

optimizer that performs simple optimizations within

the scope of extended basic blocks at the CGIR level.

Figure 6. High-level SA algorithm for optimizing register allocation.

Code Generation for Distributed and Ping-Pong Register Files 277

Extended blocks are constructed by choosing a

sequence of blocks that may contain branch instruc-

tions before the end of the last block, but can only be

executed from the start of the first block in the

sequence. Instructions are processed in the forward

direction through each block and its listed succes-

sors. New blocks are processed until a branch-to

label is encountered, at which point the processing

backs up and attempts to take a different path down

another successor on the list. The EBO is used to

perform peephole optimizations immediately after

instruction translation, during unrolling and pipe-

lining, after unrolling and pipelining, and after

register allocation. The EBO performs optimizations

such as forward propagation, common-expression

elimination, constant folding, dead-code elimination

and a host of special-case transformations that are

unique to the architecture of a particular machine.

Performing these peephole optimizations improves

the performance and quality of the generated code.

There remain many situations in which the core

routines inside the EBO would need to be rewritten

given that the machine-dependent implementation in

influenced by the PAC DSP architecture. Hence, our

work not only involves refinement of the basic

peephole optimizations, but also aims to employ

techniques for supporting the PAC DSP architecture.

Table 2 lists the design features included in the EBO

for the original ORC that supports the IA-64

processor and for the PAC DSP compiler.

Both compilers have implemented the basic

peephole optimizations (forward propagation, com-

mon expression elimination, constant folding, and

dead code elimination). However, due to the PAC

DSP using irregular register files and clustered

architectures, illegal propagation may occur when

Figure 7. Schedule/evaluation algorithm in the SA approach.

Table 2. EBO refinement from the original ORC to the PAC

DSP compiler.

EBO optimization

ORC for

IA64

PAC DSP

compiler

Forward propagation � �
Common expression

Elimination

� �

Constant folding � �
Dead code elimination � �
Conditional branch resolving � –

Redundant condition

elimination

� –

Memory offset merging – �
Compound operation

conversion

� �

Subword calculation – �
Dual load/store operation – �

278 Lin et al.

multiple virtual registers are allocated to different

register files. A major problem when applying such

basic peephole optimizations to the PAC DSP is that

we cannot take all the virtual registers as registers in

a unified register file to analyze their correlation.

Instead, we have to develop a strategy with cost

models to enhance the extended block optimizations.

Among those basic optimizations, constant folding

is calculated with constant variables and dead code

elimination is analyzed with liveness of registers. They

are less affected by restricted register access and

instruction insertion in the generation of valid code.

But forward propagation and common-expression

elimination may be greatly affected by the specific

PAC DSP architecture, and require the supplementary

analysis of the information about clustering and ping-

pong setting. Their behavior should be carefully

analyzed for the possibility of illegal propagation of

data flow. Here are some examples to motivate the

need of our optimization schemes. Consider the code

fragment below:

Code fragment 1

1. x:=t1;
2. a[t2]:=t5;
3. a[t3]:=x+t6;
4. a[t4]:=x+t7;

The technique for compilers to optimize the above

code is to use t1 instead of x, wherever possible after
the copy statement x:=t1 [31]. Following the com-

mon data-flow analysis and copy propagation applied

to the code fragment 1, we have the optimized code

below:

Code fragment 2

1. x:=t1;
2. a[t2]:=t5;
3. a[t3] :=t1+t6;
4. a[t4]:=t1+t7;

This propagation can remove all the data depen-

dency produced by x:=t1, providing the compiler

with possibility to eliminate the assignment of x:=t1.
However, the simple scheme above is not appropri-

ate for the design of the PAC DSP architecture. Due

to the specific-architecture design with clustering and

heterogeneous distributed register files, extra inter-

cluster-communication code needs to be inserted if

there occurs the data flow across clusters. Suppose t1

is allocated to a different cluster from t6, t7 and x,
the insertion of intercluster-communication code will

then need to be done if applying copy propagation.

Such overhead of communication code increases the

total cycles of the optimized code compared with the

non-optimized one.

Another example below presents the issue of private-

access nature of A and AC registers. For the

convenience to trace the properties of private-register

access, Code Fragment 3 lists assembly code gener-

ated from code fragment 1. Assume that D register

d2, and private registers a1, ac1, and ac2 are

allocated to the variables x, t1, t6, and t7, respectively.

Code fragment 3

1. MOV d2, a1

2. MOV d3, a3

3. ADD d4, d2, ac1

4. SW d4, d0, 24

5. ADD d6, d2, ac2

6. SW d6, d0, 28

Note that the operation MOV d2, a1 reaches the use

of d2 in lines 3 and 5. However, it is impossible to

replace all the uses of d2with a1 directly, for the reason

that A register files are only attached to M-unit and AC

register files are also only attached to I-unit. If d2 is

replaced with a1, the compiler must insert extra copy

instructions for indirectly private-register access. This

insertion of extra copy instructions also brings the

penalty and occupies additional computing resources,

and therefore needs to be considered for performing

copy propagations.

For handling the issues above, we build a cost model

to evaluate the extra communication cost and the

benefit gainable from the variable n being replaced by

m. The equation is defined in the following:

Costðn; mÞ ¼ Gainðn; mÞ � ðCPACðn; mÞ
þ RPðn; mÞÞ; ð1Þ

where CPACðn; mÞ represents the cost from propa-

gating across clusters, and RPðn; mÞ is the cost from

the increase of register pressure due to data duplica-

tion between two different private register files.

Furthermore, Gainðn; mÞ is calculated using the

reduced size of communication code and reduced

number of copy assignments after optimization. If

Code Generation for Distributed and Ping-Pong Register Files 279

Costðn; mÞ reveals a positive result, it implies that the

optimizations can be applied with no anomalous

effect. On the contrary, the optimizations related to

propagation are suspended for the variables n and m in

case of Costðn; mÞ showing a negative result.

We further explain the employment of the cost

model by using some examples for clarity. Consider

the examples with the data-flow graph given in

Figs. 8 and 9, in which every rectangular node is

represented as an operation and its attached small

circles stand for the corresponding register-type data

used/defined. Different register file types and clusters

are illustrated as the legend shown in the figures.

Assume that it takes three cycles for intercluster

communication (as such nodes associated with both

clusters) and one cycle for executing every other

operation. In the data-flow graph of Fig. 8, there

exist two choices to do the copy propagations; the

first is to propagate a to c , and the other is to

propagate b to c. If we choose to propagate a to c, the
code block surrounded by the dotted lines could be

eliminated; hence we would gain one-cycle perfor-

mance improvement by eliminating the code block

but three-cycle degradation of additional intercluster

communication because a and c are set in different

clusters. On the other hand, if we propagate b to c,
one-cycle performance improvement could be done

without any penalty. By using the proposed cost

model, the better choice, Bpropagation from b to c^,
should be made evidently. Another example is

shown in Fig. 9. Originally, the data flow going

through the right path in the figure has the availabil-

ity of copy propagation from a to c. However, once
we propagate a to c , the register pressure would

increase oddly since the AC and A register files are

assigned to the operands concurrently. To meet the

register-access constraints in PAC DSP architectures,

we must issue one more instruction to copy a to the

D register files for the simultaneous data access. The

evaluation result of our proposed cost model shows

the profit of the propagation; we earn six-cycle

performance improvement because of eliminating

the two nodes in the right path but one-cycle

degradation due to the extra copy operation needed.

Figure 8. Example 1 of enhanced EBO cost model.

Figure 9. Example 2 of enhanced EBO cost model.

280 Lin et al.

The positive result indicates that the propagation

could be done properly.

To take further advantage of the architecture, we

propose additional machine-dependent optimizations

on the EBO phases of the PAC DSP compiler,

including memory offset merging, subword calcula-

tion, and dual load/store operation. The memory

offset merging utilizes the compound forms of load/

store instructions. Rather than wasting two instruc-

tions to perform an actual load/store operation after

the computation of the entire Bbaseþ offset̂ address,

we calculate the final address of the memory and

access the data using a single instruction.In addition,

the ISA of the PAC DSP includes a rich and general

set of subword instructions to accelerate lower

precision operations. A subword in the PAC DSP

can be 8 or 16 bits long, so that quad or dual

subwords can be accommodated in a single register,

which comprises 32 bits. The challenge is to find a

set of data-parallel computations that operate on

lower precision data, and to map them onto packed

or unpacked subword instructions (the PAC DSP

provides instructions that operate on two sets of 16-

bit data or four sets of 8-bit data residing in a single

register). A basic technique is to divide a loop into

multiple loops with lower precision data. We first

need to extend the data structure that describes

virtual register (e.g., to add a new field for data

precision) to enable the determination of which

virtual registers—and thus operations—are candi-

dates for subword operations. Moreover, a phase for

packing subword operations into a single compound

instruction before the process of register allocation is

required to integrate subword optimizations into the

PAC DSP compiler.

Finally, dual load/store instructions are powerful

operations for accessing data from different memory

address and then combining/separating the values

into/from two 32-bit registers simultaneously. When

processing optimizations of dual operations, we need

to refer the precision field mentioned above, and

have to examine the operand width of the processing

data. Thus, we are able to select the most suitable

instructions for dual load/store operations.

The EBO of the PAC DSP compiler is supposed to

improve performance with minimum overhead. But

in practice, we experienced the propagation anomaly

under certain circumstance issued by the distributed,

ping-pong register files and clustered architectures.

The proposed cost model is helpful to determine the

feasibility of each possible propagation, plus further

machine-dependent optimizations, resulting in a

positive improvement in the code generation.

4.4. Architecture-Dependent Loop Nest Optimizer

The major optimizations held in the LNO phase are

based on restructuring loops to optimize data

accesses. This phase is considered to be one of the

most important optimizations affecting the perfor-

mance of the code generated for DSPs since DSP

programs typically include many loop constructs

with intensive data accesses. The LNO phase

employs traditional loop transformation techniques

such as fusion, fission, tiling, unrolling, and uni-

modular transformation. These transformations are

designed to make the optimized forms consistent

with machine features, code generation, and low-

level optimizations [32]. Three target-specific mod-

els—resource, latency, and register pressure—are

constructed for the PAC DSP to estimate the best

unrolling factor and tiling size for candidate loops at

the WHIRL level. Depending on the rate at which

instructions are issued (the issue rate), the number of

memory units and ALUs in the PAC DSP architec-

ture, we first determine the essential information (as

in Table 3) to model the basic processor parameters.

Using resource models, LNO estimates the resource

usage in each iteration of a loop from tables mapping

the equivalence between WHIRL operations and

PAC DSP instructions. Next, in the phase of

estimating the latency constraint, LNO builds a

dependence graph for the loops in order to generate

code that is suitable for software pipelining. This

graph can help to calculate the total latencies by

observing each load and store instructions. For the

PAC DSP architectures, new modeling of integer

operations is used rather than the original ORC

floating-point considerations to calculate the opera-

Table 3. Basic parameters used to model the PAC DSP.

Parameter Description

_issue_rate=4.5 We use an issue rate of 4.5 because

there are two M-units, two I-units,

and a single B-unit

_num_mem_units=2.5 The B-unit is used mainly for control, so

it is estimated at only 0.5. Similarly,

the number of memory units is

estimated at 2.5

Code Generation for Distributed and Ping-Pong Register Files 281

tion latencies more accurately. The latency value is

then used in the scheduling of software pipelining

optionally enabled in the later phase to optimize the

performance of the generated code.

Finally, register-pressure estimation policies are

elaborated to include the effects of the irregular

register file structures in the PAC DSP. The clustered

architecture characteristics of the PAC DSP are also

considered, with the register pressure for a single

cluster (neglecting the possible intercluster interfer-

ence) being appraised initially. If the register pressure

of any cluster is too high, interference between two

clusters is assessed for possible register resource

usage and communication penalty while accessing

cross-cluster content. Therefore, a cost model adapt-

ing for PAC cluster feature is proposed in Fig. 10,

which shows that register-pressure estimation affects

decisions regarding loop transformation.

5. Experiment and Discussion

Preliminary experiments were performed using

DSPstone benchmarks [33]. We evaluated the stable

optimization combinations of our designs men-

tioned in this paper and examined the performance

of the three register allocation schemes described in

Section 4.2 in particular. All benchmark programs

were compiled with the following register alloca-

tion schemes, with or without the combination of

the EBO and LNO optimization phases (disabling

all other optimizations): initial ORC adaptation

(primitive code generation), register allocation

using the PALF approach, register allocation using

the SA approach, and register allocation using the

hybrid approach (PALF-LRA+SA-LRA). The prim-

itive code generation, which is a modification of the

original ORC register allocation that assumes that

Figure 10. Register-pressure cost model for loop transformation.

Figure 11. Speedup comparison between different register allocation schemes.

282 Lin et al.

the PAC DSP has only one unified register file

containing all registers and inserts the codes

required to make the register allocation result

executable, is treated as the base reference in the

comparison. We first compare the speedup of DSP

benchmarks for various register file assignment

methods, which are labeled as the BPALF-LRA^,
BSA-LRA^, and BPALF-LRA+SA-LRA^ in Fig. 11,

relative to those for the primitive code generation.

As shown in the figure, the performance gain for the

speedup for the PAC DSP varies widely across the

different benchmarks, and with averages 1.32, 1.75,

and 1.66 relative to the BPALF-LRA^, BSA-LRA^
and BPALF-LRA+SA-LRA^, respectively. Due to

the property of randomization, the SA provides a

locally exhaustive exploration on RFA and thereby

in most cases obtains the better results than the

PALF, as revealed in the comparison. Also, the

hybrid approach produces the best results against

the other individual assignment methods for many

benchmark programs, as what we expect. There are

some abnormal cases (e.g. complex_update and

n_complex_updates) in which we think that the

additional code insertion made by the PALF

heuristic for the initial RFA would sometimes

impair the evaluation procedure in the SA phase of

the hybrid scheme, resulting in less optimized code

than the pure PALF manner. Such an anomaly

mostly results from that all available M-unit slots

for inserting intercluster communication while

scheduling certain basic blocks in which the PALF

assigns the A register files to the most TNs, are

jammed by the initial RFA so that the searching

space of SA is limited since the attempting in

modifying the cluster assignment of the operations

becomes difficult due to the jam. This anomaly

occurrence may be eliminated with a specific

handler in between the initial PALF and SA

procedures to assure that the initial RFA using

PALF would not restrict the SA process heavily.

Figure 12 shows the speedup comparison with

enabling the EBO optimization phase. The results

present that our development of the PAC-aware EBO

optimizer obtains significant performance improve-

ment while using all the three register allocation

schemes. The anomaly between BSA-LRA^ and

BPALF-LRA+SA-LRA^ still exists in a few cases

but it has less effect than without the EBO

optimization because the elimination of operations

in the processing of EBO provides more the search-

ing space of SA. Figure 13 exhibits the performance

gain with enabling the LNO optimization phase

additionally. The effectiveness of the LNO optimi-

zation phase in the ORC infrastructure (only enabled

in the B-O3^ level by default) is highly depend on the

processing of other optimization phases, and en-

abling the LNO will also turn on the EBO phase and

many other optimizations by default in the original

ORC design. Therefore, we only examined the

combination of LNO and EBO phases but not test

the LNO solely to make the experiments match the

real-compilation process. It appears that the results

suggest that our current approaches employing the

LNO, EBO, and various schemes of register alloca-

Figure 12. Speedup comparison while activating the EBO optimization phase.

Code Generation for Distributed and Ping-Pong Register Files 283

tion could achieve significant performance improve-

ment for code compilation in most cases. In general,

while the BPALF-LRA^ providing the fine initial

RFAs for the BSA-LRA^, the hybrid method of

BPALF-LRA^ and BSA-LRA^ could boost the most

performance consequently, resulting in the total

speedup from 1.75 to 2.83 times as displayed in the

figure. Unsurprisingly, the massive hazards of the

PAC DSP impacts on the exploitation of ILP in all

functional units, because an increase in ILP will

often introduce further hazards, resulting in some of

the benchmark codes (e.g., real_update) being less

affected by our optimizations. These evaluations also

revealed to the DSP designers how the architecture

support could be enhanced for better compiler code

generation.

We next explore the feasibility and effectiveness

of the SA process used in both the BSA-LRA^ and

BPALF-LRA+SA-LRA^ schemes. Obviously, the

number of the SA iterations required to achieve a

near-optimal result is highly proportional to the

length of the basic block processed because the

number of the instructions available for changing

their RFAs is actually the most significant factor

affecting the searching space. Therefore, in the

development of our current SA procedure for BSA-
LRA^ and BPALF-LRA+SA-LRA^ schemes, we

determine to set the value of threshold to the length

of the basic block processed and reasonably set the

initial value of energy by a constant ratio of

threshold, to make the searching convergent to about

the equivalent status for each basic block with

Figure 13. Speedup comparison while activating the LNO optimization phase.

310

315

320

325

330

335

340

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Pass

M
in

im
al

 S
ch

ed
ul

e
Le

ng
th

1.5x 2x

2.5x 3x

Figure 14. The relation between the iteration passes and the minimal schedule length found while using different values of the initial energy.

284 Lin et al.

different length. Although the lengths of basic blocks

in the programs that we tested were almost smaller

than 200, we picked an uncommonly large basic

block (threshold ¼ 451) found in the fir2dim pro-

gram, which is produced by the unrolling in the LNO

phase, for the better coverage of the SA exploration.

Figure 14 shows the experimental results of the SA

iteration tests in average with different values of

initial energy. We used 1:5� threshold , 2:0�
threshold , 2:5� threshold , and 3:0� threshold ,

respectively, as the initial energy, to evaluate the

minimal schedule length in each iteration of SA. The

normalized compilation-time comparison is also

provided in Fig. 15. Apparently the larger initial

energy gives the more probability to find the lower

value of schedule length before the searching

iteration stops. By referring to both Figs. 14 and

15, it reveals that in our experiments 2:0� threshold
should be an appropriate initial energy that will

produce a sufficiently good result within the limited

iterations practically. Moreover, Fig. 16 exhibits the

compilation-time comparison of the experiments

referred in Fig. 13, in which the initial value of

energy is set to 2:0� threshold . The compilation

time for most benchmark programs was less than 5 s

in our measurement, assuring the feasibility of our

proposed schemes with the SA approach. As shown

in the figure, the hybrid method takes much less

process time than the pure SA approach for most

programs, especially for the programs which need

mass compilation time, but delivers the better or

comparable results. Some exceptional results, like

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.5x 2x 2.5x 3x

Initial Energy (times of the basic block length)

N
o

rm
a

liz
e

d
 C

yc
le

 T
im

e

Figure 15. The comparison of the compilation time while using different values of the initial energy.

Figure 16. The comparison of the compilation time while using different register allocation schemes.

Code Generation for Distributed and Ping-Pong Register Files 285

biquad_one_section, which takes a little more time

for the hybrid method than the pure SA, are mainly

caused by the penalty of the initial RFA procedure

using BPALF-LRA^. However, the compilation

using the hybrid approach for these programs still

bring some performance improvement over the BSA-
LRA^ (referring to Fig. 13).

6. Conclusions

In this paper we present the design and implementa-

tion of compilers for the PAC DSP, which is a novel

high-end DSP with a clustered architecture design and

distributed and ping-pong register files. The compiler

was based on the ORC infrastructure, consisting of

PAC-DSP-specific code compilation schemes, regis-

ter allocation for the particular register file architec-

tures, and various optimization phases tuned to

specific processors, to achieve effective code genera-

tion. We have demonstrated the viability of our

approaches to the PAC DSP via several preliminary

experiments performed on the PAC DSP prototype.

Experience gained in the design of compilers for the

PAC DSP helps in elucidating the effects of applying

various compiler technologies to the novel architec-

tures. We believe that ORC infrastructures could also

be adapted to other similar type of VLIW DSPs,

thereby yielding effective code generation.

Acknowledgment

This research work was supported in part by the NSC

under grant nos. 95-2220-E-007-001 and 95-2220-E-

007-002, and by the MOEA research project under

grant nos. 95-EC-17-A-01-S1-034 and 96-EC-17-A-

01-S1-034 in Taiwan.

References

1. The SUIF 2 compiler system, http://suif.stanford.edu/suif/suif2.

2. P.P. Chang et al., BIMPACT: An Architectural Framework for

Multiple-Instruction-Issue Processors,^ in Proceedings of the

18th Annual International Symposium on Computer Architec-

ture, Toronto, Canada, vol. 28, no. 5 1991, pp. 266–275.

3. ReaCT-ILP Laboratory, BTrimaran: An Infrastructure for

Research in Instruction-Level Parallelism,^ http://www.

trimaran.org.

4. A. Andrew et al., BThe Zephyr Compiler Infrastructure,^
http://www.cs.virginia.edu/zephyr/.

5. The GNU Compiler Collection, http://gcc.gnu.org.

6. R. Ju, S. Chan and C. Wu, BOpen Research Compiler for the

Itanium Family,^ Tutorial at the 34th Annual International

Symposium on Microarchitecture, Dec. 2001.

7. G.R. Gao, J.N. Amaral, J. Dehnert and R. Towle, BThe SGI

Pro64 compiler infrastructure: A tutorial,^ in Tutorial at the

International Conference on Parallel Architecture and Compi-

lation Techniques, Oct. 2000.

8. T.-J. Lin, C.-C. Lee, C.-W. Liu and C.-W. Jen, BA Novel

Register Organization for VLIW Digital Signal Processors,^
in Proc. of 2005 IEEE Int. Symp. on VLSI Design, Automation,

and Test, 2005, pp. 335–338.

9. T.-J. Lin, P.-C. Hsiao, C.-W. Liu and C.-W. Jen, BArea-

Efficient Register Organization for Fully-Synthesizable VLIW

DSP Cores^, International Journal of Electrical Engineering,
vol. 13, May 2006.

10. D. Chang and M. Baron, BTaiwan_s Roadmap to Leadership in

Design,^ Microprocessor Report, In-Stat/MDR, Dec. 2004.

http://www.mdronline.com/mpr/archive/mpr_2004.html.

11. D.C.-W. Chang, C.-W. Jen, I-T. Liao, J.-K. Lee, W.-F. Chen

and S.-Y. Tseng, B PAC DSP Core and Application Process-

ors,^ in Proc. of the IEEE Int. Conf. on Multimedia & Expo,

Toronto, July 9–12, 2006.

12. T.-J. Lin, C.-C. Chang, C.-C. Lee and C.-W. Jen, BAn

Efficient VLIW DSP Architecture for Baseband Processing,^
in Proceedings of the 21th International Conference on

Computer Design, 2003.

13. T.-J. Lin, C.-M. Chao, C.-H. Liu, P.-C. Hsiao, S.-K. Chen,

L.-C. Lin, C.-W. Liu, C.-W. Jen, BComputer Architecture: A

Unified Processor Architecture for RISC & VLIW DSP,^ in

Proceedings of the 15th ACM Great Lakes symposium on

VLSI, April 2005.

14. TMS320DM6443 Digital Media System-on-Chip Datasheet,

Texas Instruments, 2006.

15. S. Rixner, W.J. Dally, B. Khailany, P. Mattson, U.J. Kapasi and

J.D. Owens, BRegister organization for media processing,^ in

International Symposium on High Performance Computer

Architecture (HPCA), pp. 375–386, 2000.

16. A. Capitanio, N. Dutt and A. Nicolau, BPartitioned register

files for VLIW_s: A preliminary analysis of tradeoffs,^ in

Procs. of the 25th Int. Symp. on Microarchitecture: Portland,

OR, December 1–4, 1992, pp. 292–300.

17. A. Terechko, E.L. Thenaff, M. Garg, Eijndhoven and

H. Corporaal, BInter-cluster communication models for

clustered VLIW processors,^ in Procs. HPCA, 2003, pp.

354–364.

18. WHIRL Intermediate Language Specification, BSGI,^ 2000.

19. Y.-P. You, C.-R. Lee and J.K. Lee, BCompiler Analysis and

Supports for Leakage Power Reduction on Microprocessors,^
in LCPC_02, USA, July 2002.

20. C.-R. Lee, J.-K. Lee, T.-T. Hwang and S.-C. Tsai, BCompiler

Optimizations on VLIW Instruction Scheduling for Low

Power,^ ACM Transact. Des. Automat. Electron. Syst., vol.

8, no. 2, 2003, pp. 252–268.

21. Y.-P. You, C.-W. Huang and J.-K. Lee, A Sink-N-Hoist

Framework for Leakage Power Reduction,^ in Proceedings of

ACM EMSOFT 2005, September 2005.

22. P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju and J.K.

Lee, BCompiler Support for Speculative Multithreading Ar-

chitecture with Probabilistic Points-To Analysis,^ in Proceed-

286 Lin et al.

http://www.trimaran.org
http://www.trimaran.org

ings of ACM Principles and Practices of Parallel Program-
ming (ACM PPoPP), San Diego, 2003.

23. P.-S. Chen, Y.-S. Hwang, D.-C. Ju and J.K. Lee,

BInterprocedural Probabilistic Pointer Analysis,^ IEEE

Trans. Parallel Distrib. Syst., vol. 15, no. 10, Oct. 2004,
pp. 893–907.

24. Y.-C. Lin, Y.-S. Hwang and J.K. Lee, BCompiler Optimiza-

tions with DSP-Specific Semantic Descriptions,^ in LCPC_02,
USA, July 2002.

25. John R. Hauser. SoftFloat. http://www.jhauser.us/arithmetic/

SoftFloat.html.

26. C.-W. Chen, C.-L. Tang, Y.-C. Lin and J.-K. Lee, BORC2DSP:
Compiler Infrastructure Supports for VLIW DSP Processors,^ in
Proceedings of 2005 IEEE International Symposium on VLSI

Design, Automation, and Test, 2005, pp. 224–227.

27. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, BOptimization by

Simulated Annealing,^ Science, vol. 220, no. 4598, 1983, pp.

671–680.

28. P. Salamon, P. Sibani and R. Frost, BFacts, Conjectures, and
Improvements for Simulated Annealing. ser. Monographs on

Mathematical Modeling and Computation,^ Society for In-

dustrial and Applied Mathematics, no. 7, 2002.

29. R. Leupers, BInstruction scheduling for clustered VLIW

DSPs,^ in Proc. Int_l Conference on Parallel Architecture

and Compilation Techniques, Oct. 2000, pp. 291–300.

30. Y.-C. Lin, Y.-P. You and J.-K. Lee, BRegister Allocation for

VLIW DSP Processors with Irregular Register Files,^ in CPC
2006, Spain, Jan. 2006.

31. A.V. Aho, R. Sethi and J.D. Ullman, BCompilers: Princi-

ples, Techniques and Tools,^ Addison-Wesley, November

1985.

32. M.E. Wolf, D.E. Maydan and D.-K. Chen, BCombining

loop transformations considering caches and scheduling,^
International Journal of Parallel Programming, vol. 26, no.
4, 1998.

33. V. Zivojnovic, J. Martinez, C. SchlÌger and H. Meyr,

BDSPstone: A DSP-Oriented Benchmarking Methodology,^
Proc. of ICSPAT, Dallas, 1994.

Yung-Chia Lin received his B.S. degree in Physics from

National Tsing Hua University, Taiwan in 1997. He is

working toward the Ph.D. degree in the Department of

Computer Science, National Tsing Hua University. His current

research interests include optimizing compilers, computer

architectures, and system software and operating system for

embedded SOC environments.

Chia-Han Lu received his B.S. degree in Computer Science and

Information Engineering from Feng Chia University, Taiwan in

2003 and his M.S. degree in Computer Science from National

Tsing Hua University, Taiwan in 2005, where he is currently

working towards a Ph.D. His researches include optimizing

compilers and system software for embedded SOC environments.

Chung-Ju Wu received his B.S. degree in Computer

Information and Science from National Chiao Tung Univer-

sity, Taiwan in 2001 and the M.S. degree in Computer Science

from National Tsing Hua University, Taiwan in 2003, where

he is currently working towards the Ph.D. degree. His current

researches include GCC compiler porting and system software

for embedded SOC environments.

Chung-Lin Tang received his B.S. degree from the Department

of Computer and Information Science, National Chiao Tung

University, Taiwan in 2003 and the M.S. degree at the Department

of Computer Science, National Tsing Hua University, Taiwan in

Code Generation for Distributed and Ping-Pong Register Files 287

http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html

2005. His research interests include compilers, computer architec-

ture, operating systems, and other systems related topics.

Yi-Ping You received his B.S. degree in Computer Science

and Information Engineering from National Chi Nan Univer-

sity, Taiwan in 2000 and his Ph.D. degree in Computer

Science from National Tsing Hua University, Taiwan in 2007,

where he also received his M.S. degree in 2002. His

researches include optimizing compilers and software power

management.

Ya-Chiao Moo received his B.S. degree in Computer Science

from National Tsing Hua University, Taiwan in 2004, where

he also received his M.S. degree in 2006. His researches

include loop-nest optimizations and interprocedural analysis in

compilers.

Jenq-Kuen Lee received his B.S. degree in Computer Science

from National Taiwan University in 1984. He received the

Ph.D. degree in Computer Science from Indiana University in

1992, where he also received the M.S. degree (1991) in

Computer Science. He is now a Professor in the Department of

Computer Science at National Tsing-Hua University, Taiwan

where he joined the department in 1992. He was a key

member of the team who developed the first version of the

pC++ language and SIGMA system while at Indiana Univer-

sity. He was also a recipient of the most original paper award

in ICPP ’97 with the paper entitled BData Distribution

Analysis and Optimization for Pointer-Based Distributed

Programs.’’ His supervised Ph.D. student received the

distinguished dissertation award as honorable mention by

IICM, 1999. He also received an achievement award from

Ministry of Education of Taiwan for the University and

Industrial joint research, 2001 and a Microsoft research award

for embedded systems, 2003. His current research interests

include optimizing compilers, compilers for low-power and

embedded systems, parallel object-oriented languages and

systems, and computer architectures.

288 Lin et al.

	Effective Code Generation for Distributed and Ping-Pong Register Files: A Case Study on PAC VLIW DSP Cores
	Abstract
	Introduction
	PAC DSP Architectures
	Code-Generation Issues with PAC DSP Architectures
	Effective Compiler Supports for PAC DSP Cores
	Code Generation with Target Information Extension
	Optimizing Register Allocation and Instruction Scheduling
	PAC-aware Peephole Optimizers
	Architecture-Dependent Loop Nest Optimizer

	Experiment and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

