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Motion recognition has received increasing attention in recent years owing to heightened demand for
computer vision in many domains, including the surveillance system, multimodal human computer
interface, and traffic control system. Most conventional approaches classify the motion recognition task
into partial feature extraction and time-domain recognition subtasks. However, the information of motion
resides in the space-time domain instead of the time domain or space domain independently, implying that
fusing the feature extraction and classification in the space and time domains into a single framework is
preferred. Based on this notion, this work presents a novel Space-Time Delay Neural Network (STDNN)
capable of handling the space-time dynamic information for motion recognition. The STDNN is unified
structure, in which the low-level spatiotemporal feature extraction and high-level space-time-domain
recognition are fused. The proposed network possesses the spatiotemporal shift-invariant recognition
ability that is inherited from the time delay neural network (TDNN) and space displacement neural
network (SDNN), where TDNN and SDNN are good at temporal and spatial shift-invariant recognition,
respectively. In contrast to multilayer perceptron (MLP), TDNN, and SDNN, STDNN is constructed
by vector-type nodes and matrix-type links such that the spatiotemporal information can be accurately
represented in a neural network. Also evaluated herein is the performance of the proposed STDNN via
two experiments. The moving Arabic numerals (MAN) experiment simulates the object’s free movement
in the space-time domain on image sequences. According to these results, STDNN possesses a good
generalization ability with respect to the spatiotemporal shift-invariant recognition. In the lipreading
experiment, STDNN recognizes the lip motions based on the inputs of real image sequences. This
observation confirms that STDNN yields a better performance than the existing TDNN-based system,
particularly in terms of the generalization ability. In addition to the lipreading application, the STDNN
can be applied to other problems since no domain-dependent knowledge is used in the experiment.

1. Introduction

Space and time coordinate the physical world that

surrounds us. Physical objects exist at some space-

time point. Such objects may be idle or active, and

their forms or behaviors may vary over time. De-

spite these distortions, people can inherently recog-

nize the objects. To construct an ideal recognizer

capable of dealing with natural patterns in daily life,

e.g., speech, image, or motion, the recognizer should

remain insensitive to the patterns’ distortions in the

time or space domain, or both.

Some criteria are available to assess the rec-

ognizer’s tolerance for distortions of input pat-

terns. For instance, the translation-invariant prop-

erty of a recognizer implies that the recognizer

can accurately recognize an object regardless of

its proximity. Figure 1 summarizes these crit-

era for time-domain and space-domain distortions.

Some physical analogies between time-domain and
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Fig. 1. Invariant criteria for an ideal recognizer.

space-domain criteria can be observed from the view-

point of expansion of dimensions. For example, the

shift-invariant criterion (in the time domain) cor-

responds to the translation-invariant criterion (in

the space domain); the warping-invariant criteria (in

the time domain) corresponds to the scaling- and

deformation-invariant criteria (in the space domain)

as well.

Resolving these distortion problems either on the

time domain or space domaina has received con-

siderable interest. Typical examples include speech

recognition and image recognition, which are on the

time domain and space domain, respectively. Pre-

vious investigations have attempted to solve these

problems in two ways: one is to select invariant-

features for these distortions, such as the FFT and

moment features; the other is to endow the classi-

fier with the invariant ability to these distortions.

Figure 1 also contains some of their typical clas-

sifiers. According to this figure, in the space do-

main, Neocognitron2 and Space Displacement Neu-

ral Network (SDNN) are used to recognize optical

characters. The neocognitron overcomes the pat-

terns’ deformation and translation problem, while

SDNN solves the patterns’ translation problem. The

SDNN referred to herein indeed represents a class of

neural networks.3–5 In these neural networks, each

node has a local receptive field which is a small rect-

angular window consisting of part of nodes in the

previous layer; in addition, weight sharing is applied

to all the nodes’ receptive fields that are in the same

layer. In the time domain, the typical classifiers ca-

pable of tackling the distortion problems are Time

Delay Neural Network (TDNN),1 Recurrent Neural

Network (RNN), Hidden Markov Model (HMM), and

Dynamic Time Warping (DTW) which are used for

speech recognition. The TDNN overcomes the pat-

terns’ time-shift distortion, while the other classifiers

eliminate the patterns’ time-warping distortion.

However, integrated space-time-domain recogni-

tion has seldom been mentioned, particularly motion

recognition. The dashed line between the time do-

main and space domain in Fig. 1 is just like a wa-

tershed that separates the research fields of space-

domain and time-domain pattern recognition in the

past. Previous experience in developing a bimodal

speech recognition system that incorporates the im-

age recognition techniques into a conventional speech

recognition system allows us not only to acquire the

rich sources from these two areas, but also to com-

bine the space-domain recognition and time-domain

recognition.

In the following, the problems to be solved are

clarified since motion recognition is a diverse topic.

First, we proceed with motion recognition on monoc-

ular images that are widely adopted in related in-

vestigations. Using monocular images is advanta-

geous in that humans can only recognize a motion

aThe space domain referred to herein is indeed the 2-D image space domain.
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depending on an image sequence. Therefore, we be-

lieve that machine vision can also perform the same

task; besides, in the monocular images, the problem

of recovering 3-D geometry does not need to be re-

covered. Another merit of using monocular images is

that the input data are real image sequences. Some

earlier investigations attached markers on the actor

to facilitate the analysis; however, this is impracti-

cal in real situations. This work focuses primarily on

the main part of recognition and the local tracking of

the actor.b Herein, global tracking is assumed to be

supported by other systems. The motion types can

be categorized as nonstationary motion and station-

ary motion. An object’s motion is usually accompa-

nied by a translation in position. Occasionally, the

translation is much larger than our eyesight. For

instance, the motion of a flying bird includes a mo-

tion of wings and a translation of body movement in

3-D space. This example typifies the case of nonsta-

tionary motion. On other occasions, the translation

is within our eyesight, e.g., facial expressions, hand

gestures, or lipreading. This is the case of stationary

motion. For nonstationary motion, global tracking

to keep the actor within eyesight and local tracking

to extract the actor from its background are needed.

For stationary motion, only local tracking is deemed

necessary required.

Most conventional approaches classify the mo-

tion recognition task into spatial feature extractionc

and time-domain recognition. In such approaches,

an image sequence is treated as a feature vector

sequence by feature extraction. By spatial fea-

ture extraction, the information in each image can

be highly condensed into a feature vector, and the

time-domain recognition can be performed after-

ward. However, spatial feature extraction is gen-

erally domain-dependent, and some delicate prepro-

cessing operations may be reguired. The developed

recognition system is subsequently restricted to one

application, since redesigning the feature extraction

unit for different applications would be too time-

consuming. On the other hand, for motion recog-

nition, information does not only exist in the space

domain or time domain separately, but also exists

in the integrated space-time domain. Distinguish-

ing between feature extraction and recognition in the

space domain and time domain would be inappropri-

ate. Therefore, in this work feature extraction and

classification are integrated in a single framework to

achieve space-time-domain recognition.

Neural networks are adopted in the developed

system herein, since their powerful learning ability

and flexibility have been demonstrated in many ap-

plications. To achieve this goal, a model must be

developed, capable of treating the space-time 3-D dy-

namic information. Restated, the model should be

capable of learning the 3-D dynamic mapping that

maps the input pattern varying in the space-time

3-D domain to a desired class. However, according

to our results, the conventional neural network struc-

ture cannot adequately resolve this problem. The

earlier MLP can learn the nonlinear static mapping

between the input set and the output set. The in-

ventions of the TDNN and RNN bring the neural

network’s applications into the spatiotemporal do-

main, in which the 1-D dynamic mapping between

the input set and the output set can be learned. The

SDNN, which is evolved from the TDNN, further en-

hances the ability of the neural networks to learn

2-D dynamic mapping. The related development is

curtailed since previous literature has not clarified

the need for such models. A more important rea-

son is that the ordinary constituents, which are used

in MLP, TDNN, and SDNN, are difficult in terms of

constructing the complex network that can represent

and learn the 3-D, or higher dimensional dynamic

information.

In light of the above discussion, this work

presents a novel Space-Time Delay Neural Network

(STDNN) that embodies the space-time-domain

recognition and the spatiotemporal feature extrac-

tion in a single neural network. STDNN is a

multilayer feedforward neural network constructed

by vector-type nodes (cell) and matrix-type links

(synapse). The synapses between layers are locally

connected, and the cells in the same layer use the

same set of synapses (weight sharing). The STDNN’s

input is the real image sequence, and its output is

the recognition result. By constructing every layer

into a spatiotemporal cuboid, STDNN preserves the

bThe actor referred to herein implies the area of interest in a motion. This actor may be a human, an animal, an object, or any
other object that performs the motion.
cThe feature extraction referred to herein includes all the processes needed to transform an image into a feature vector.
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inherent spatiotemporal relation in motion. In addi-

tion, the size of the cuboids shrinks increasingly from

the input layer to the final output, so that the infor-

mation is condensed from the real image sequence to

the recognition result. For the training, due to the

novel structure of the STDNN, two new supervised

learning algorithms are derived on the basis of the

backpropagation rule.

The proposed STDNN possesses the shift-

invariant property in the space-time domain because

it inherits the TDNN’s shift-invariant property and

SDNN’s translation-invariant property. STDNN’s

spatiotemporal shift-invariance ability implies that

accurate tracking in the space-time domain is unnec-

essary. Once the whole motion occurs in the image

sequence, the STDNN can handle it. The actor does

not need to be located in the centroid; nor must the

actor start his/her motion in the beginning of the

image sequence.

The rest of this paper is organized as follows. Sec-

tion 2 reviews previous work on the motion recogni-

tion problem. Sections 3 and 4 describe STDNN’s

structure and learning algorithms, respectively. Sec-

tion 5 presents two recognition experiments: moving

Arabic numerals (MAN) and lipreading. The former

exhibits the STDNN’s spatiotemporal shift-invariant

property, while the later shows the practical applica-

tion of the STDNN. Concluding remarks are finally

made.

2. Previous Work

Research involving motion in computer vision has,

until recently, focused primarily on geometry-related

issues, either the three-dimensional geometry of a

scene or the geometric motion of a moving camera.6

A notable example that is closely related to motion

recognition is the modeling of human motion. In this

area, many researchers are attempting to recover the

three-dimensional geometry of moving people.7,8 Of

particular interest is, the interpretation of moving

light displays (MLDs),8 which has received consider-

able attention. In the experiments of MLDs, some

bright spots are attached to an actor dressed in black;

the actor then moves in front of a dark background.

The results of MLDs depend heavily on the ability

to solve the correspondence problem and accurately

track joint and limb positions.

Motion recognition has received increasing at-

tention as of late. Yamato et al.9 used HMM to

recognize different tennis strokes. In their scheme,

the image sequence was transformed into feature

(mesh feature) vector sequence and, then, was vec-

tor quantized to a symbol sequence. The symbol

sequences were used as input sequences for HMM in

training and testing. Although the temporal invari-

ance was accomplished by HMM, spatial invariance

was not fulfilled since the mesh feature is sensitive

to the position-displacement as described in their ex-

periments. Chiou and Hwang10 also adopted HMM

as the classifier in the lipreading task; however, the

features fed into HMM were extracted by a neural-

network-based active contour model. Waibel et al.11

developed a bimodal speech recognition system, in

which a TDNN was used to perform lipreading, and

downsampled images or 2D-FFT transformed im-

ages were used as features. In the last two cases

of lipreading,10,12 the image sequences are color im-

ages and the color information was used to locate

the mouth region. All of the systems treat the

space-time-domain recognition problem as the time-

domain recognition problem, by transforming image

sequences into feature vector sequences.

Polana and Nelson13 emphasized the recognition

of periodic motions. They separate the recognition

task into two stages: detecting and recognizing. In

the detecting stage, the motion of interest in an im-

age sequence is tracked and extracted on the basis

of the periodic nature of its signatures. The inves-

tigators measured the period of an object’s motion

using a Fourier transform.14,15 By assuming that the

object producing periodic motion moves along a lo-

cally linear trajectory and the object’s height does

not vary over time, it achieves translation and scale

invariance in the space domain. In the recogniz-

ing stage, a template matching the spatiotemporal

template of motion features is used. Temporal

scale invariance is achieved by motion features, and

shift invariance is achieved by template matching at

all possible shifts. In general, Polana and Nelson

achieved most of the invariant criteria in the time

and space domains for periodic motions. However,

assuming that the entire image sequence must con-

sist of at least four cycles of the periodic motion may

be unrealistic under some circumstances. In some

human motions, such as running and walking, which

are examples used in their experiments, this assump-

tion is appropriate. However, this assumption is

unrealistic for cases such as open-the-door action,
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Fig. 2. The cells and synapses in the STDNN.

sit-down action, facial expressions, hand gestures, or

lipreading.

3. Space-Time Delay Neural

Network (STDNN)

The motion recognition problem involves processing

information of time, space, and features. This high-

dimensional information, however, is not easily rep-

resented explicitly by ordinary neural networks be-

cause the basic units and interconnections used in

these neural networks are frequently treated as scalar

individuals. To visualize the high-dimensional infor-

mation concretely, the basic units and interconnec-

tions should not be scalar-type nodes and links.

The STDNN proposed herein employs a vector-

type node and matrix-type link as the basic unit and

interconnection, respectively. The vector-type node,

denoted as cell, embodies several hidden nodes which

presents the activation of different features in a spe-

cific spatiotemporal region. The matrix-type link,

denoted as synapse, fully connects the hidden nodes

in any two cells it connects. In this manner, the

feature information is concealed in cells. Therefore

the time and space relation can be represented as a

3-D box, i.e., the manner in which we visualize the

time and space information. Figure 2 illustrates the

cell and synapse, as well as the hidden nodes and

interconnections inside them.

Figure 3 depicts a three-layer STDNN. In the in-

put layer, an image sequence is lined up along the

t-axis, and each pixel in an image is viewed as a cell

in the input layer. The cell in the input layer gen-

erally contains one node in this case. However in

other cases, where the elements of input data may

be a vector, such a cell could contain as many nodes

according to the length of the vector. Based on the

contextual relation of time and space, the cells ar-

ranged along the t-axis, y-axis, and x-axis form a

3-D cuboid in each layer. The cells in the hidden

layer generally contain multiple hidden nodes, so

that a sufficient dimension space is available to re-

serve the feature information. In the output layer,

the number of hidden nodes in the cell equals to the

number of classes to be recognized. For instance, if

four classes of inputs are to be classified, the number

of hidden nodes should be four. According to Fig. 3,

the information is concentrated layer by layer; the fi-

nal output is obtained by summing up the outputs of

cells in the output layer and taking the average. The

final stage of the averaging is designed to acquire the

shift-invariant ability because every cell in the out-

put layer plays an equal part in the final decision.

To achieve the shifting invariant ability in both

space and time domains, each cell has a locally-linked

receptive field that is a smaller spatiotemporal box

consisting of cells in the previous layer. Moreover, all

cells in the same layer use the same set of synapses

to calculate the weighted sum of net inputs from the

activation values of cells covered in the receptive box.

The net input of the cell Z at layer l with location

(qt, qy, qx) can be expressed as:

NetZ(qt, qy, qx) =
It−1∑
it=0

Iy−1∑
iy=0

Ix−1∑
ix=0

W (it, iy, ix)X(qtαt + it, qyαy + iy, qxαx + ix) +B(qt, qy, qx) , (1)
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Fig. 3. A three-layer STDNN.

where NetZ(·) ∈ <Hl×1 denotes the net input of cell Z, X(·) ∈ <Hl−1×1 represents the cell output values in

the (l − 1)th layer, B(·) ∈ <Hl×1 is the bias cell, and W (·) ∈ <Hl×Hl−1

are the synapses in the lth layer. The

output of cell Z is:

Z(qt, qy, qx) = a(NetZ(qt, qy, qx)) , (2)

where Z(·) ∈ <Hl×1, and a : <Hl → <Hl is the activation function. The indexes used in Eqs. (1) and (2) are

defined as follows:

(qt, qy, qx) ≡ the location of cell Z in layer l.

αt, αy, αx ≡ the step size for the receptive box moving along the t-axis,

y-axis, and x-axis, respectively, at each time step.

(qtαt, qyαy, qxαx) ≡ the origin of the receptive box.

(qtαt + it, qyαy + iy, qxαx + ix) ≡ the location of cell X in layer l − 1.

(it, iy, ix) ≡ the space-time delay index of the synapse W .

It, Iy , Ix ≡ the size of receptive box along the t-axis, y-axis, and x-axis, respectively.

Figure 4 displays the practical view of

Eqs. (1) and (2). When the cell Z is located at

(qt, qy, qx), the origin of the receptive box is set

at (qtαt, qyαy, qxαx). Relative to this origin, the

cell X with local coordinate (it, iy, ix) is fed to the

cell Z, where (it, iy, ix) ranges from (0, 0, 0) to

(It − 1, Iy − 1, Ix − 1). Since the set of synapses

is identical in the same layer, the index of synapses

is the local coordinates that are only relative to the
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Fig. 4. Practical view of Eqs. (1) and (2).

origin of the receptive box. The same index is used

for the synapses which have the same relative posi-

tions in different receptive boxes.

To clarify the mathematical symbols, the nota-

tions of 3-D indexes are redefined as follows:

q ≡ (qt, qy, qx) ,

i ≡ (it, iy, ix) ,

I ≡ (It, Iy , Ix) ,

α ≡ (αt, αy, αx) ,

(3)

In addition, Eqs. (1) and (2) can be rewritten as:

NetZ(q) =

I − 1∑
i = 0

W (i)X(q ◦α+ i) +B(q) , (4)

Z(q) = a(NetZ(q)) , (5)

where ◦ is defined as the one-by-one array multipli-

cation, q ◦α = (qtαt, qyαy, qxαx). This operator is

frequently used herein.

The operations of STDNN can be viewed in an-

other way. The receptive box travels in a spatiotem-

poral hyperspace and reports its findings to the cor-

responding cell in the next layer whenever it goes to a

new place. When the searching in the present layer is

complete, the contents of all the cells in the next layer

are filled, and the searching in the next layer starts.

In this manner, the locally spatiotemporal features

in every receptive box are extracted and fused layer

by layer untill the final output is generated. In other

words, STDNN gathers the locally spatiotemporal

features that appear at any of the regions in hyper-

space to make the final decision. Hence, the STDNN

possesses the shift-invariant ability in both time and

space domains.

4. Learning Algorithms for the STDNN

The training of STDNN is based on supervised learn-

ing, and the gradient-descent method is used to de-

rive the weight updating rules. Since the STDNN is

evolved from the TDNN, the derivation of the learn-

ing algorithms of STDNN can acquire much inspira-

tion from that of TDNN. The TDNN topology, how-

ever, is in fact embodied in a broader class of neural

networks in which each synapse is represented by a

finite-duration impulse response (FIR) filter. The

latter neural network is referred to as the FIR mul-

tilayer perceptron (MLP). The FIR MLP has been

disscussed. Owing to the difference in the manner

in which the gradients are computed and the error

function is defined, many different forms of training

algorithms for the FIR MLPs have been derived.16–19

Unfortunately, these training algorithms for FIR

MLP cannot be directly applied to train STDNN
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because of the different constituents of STDNN and

FIR MLP. In FIR MLP, the synapse is treated as

a FIR filter in which every coefficient represents a

weight value on a specific delay link. In constrast to

STDNN, the input node of each FIR filter is a scalar

node, i.e., the feature information is not submerged

into a cell. The derivation of the training algorithms

for the FIR MLP thus focuses on the adaptation of

the FIR synapse rather than on that of the scalar

synapse in ordinary MLPs.

Herein, we derive the training algorithms of the

STDNN from a different viewpoint. Unlike the FIR

MLP that embeds the time-delay information into

a FIR filter, the STDNN embeds the feature infor-

mation into a cell such that time-space information

can easily be visualized. Consequently, the training

algorithms for the STDNN are derived from the per-

spective of the vector-type cell and the matrix-type

synapse.

In the following sections, two learning algorithms

are derived. The first one is derived from the in-

tuitive way that is first used in the training of the

TDNN.1 In this method, a static equivalent net-

work is constructed by unfolding the STDNN in

time and space; the standard backpropagation al-

gorithm is then used for training. The second one

adopts an instantaneous error function and accumu-

lated gradients computation, which is somewhat like

one of the algorithms proposed for the FIR MLP

training.19 These two learning algorithms are re-

ferred to herein as the static method, and instan-

taneous error method, respectively.

4.1. Static method for training STDNN

For clear explanation, a learning algorithm for the

1-D degenerative case of STDNN is discussed first.

This degenerative network is referred to herein as 1-D

STDNN. According to Fig. 5, 1-D STDNN is actu-

ally a TDNN; however, the hidden nodes in TDNN

originally lined up in each vertical axis are grouped

in a cell.

Figure 6 depicts a three-layer 1-D STDNN un-

folded in time. According to this figure, the cell

in the input layer is denoted as X(m) ∈ <HL−2×1,

where m represents the timing index, and HL−2 is

the number of the hidden nodes embodied in each

cell. With the same symbology, the cell in the hid-

den layer and output layer can be represented by

Z(q) ∈ <HL−1×1 and Y (n) ∈ <HL×1, respectively.

The synapse V (n; j) ∈ <HL×HL−1

connects the cell

Y (n) and Z(nβ+j), where β denotes the offset each

time the receptive field moves, and j represents the

number of unit-delays, ranging from 0 to J − 1. The

parameter J , i.e., the total number of unit-delays,

can also be practically viewed as the length of the

receptive field. As Fig. 6 indicates, when the cell Y

moves from n to n + 1, the receptive field jumps β

cells, and the subsequent J cells make up the recep-

tive field of Y (n+ 1).

d(0) d(1)

...

TDNN 1-D STDNN

x(0) x(1) x(2) x(3) x(4)cell

Fig. 5. An 1-D STDNN and TDNN.
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......
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Layer L-1

Layer L-2

Fig. 6. An 1-D STDNN unfolded in time.

In the unfolded 1-D STDNN, many synapses are

replicated. To monitor which of the static synapses

are actually the same in the original (folded) net-

work, the augmentive parameter n is introduced.

The parameter n used in the unfolded network dis-

tinguishes the synapses, which are the same ones in

the 1-D STDNN. For example, the synapses V (n; j)

and V (n + 1; j) represent two different ones in the

unfolded network; however, they are identical in the

1-D STDNN. Similarly, the synapses between the

hidden layer and the input layer are denoted as

W (q; i) ∈ <HL−1×HL−2

that connects the cell Z(q)

and X(qα+ i), where α denotes the offset each time

the receptive field moves, and i represents the num-

ber of unit-delays.

According to Eq. (5), the output of these cells

can be expressed by:

Y (n) = a

J−1∑
j=0

V (n; j)Z(nβ + j) +C(n)

 ,

n = 0, . . . , N − 1 , (6)

Z(q) = a

(
I−1∑
i=0

W (q; i)X(qα+ i) +B(q)

)
,

q = 0, . . . , Q− 1 , (7)

where C(n) and B(q) are the bias cells. The final

output O is the average of Y (n) summing over n,

O =
1

N

N−1∑
n=0

Y (n) . (8)

Let d denote the desired output of the STDNN.

Then, the square error function is defined by:

E =
1

2
(d−O)T (d−O) . (9)

Applying the gradient-descent method to minimize

the above error function, leads to:

∆V (n; j) = −η ∂E

∂V (n; j)
, (10)

∆W (q; i) = −η ∂E

∂W (q; i)
. (11)

Thus, the synapse updating rule of the output layer

and hidden layer can be obtained by differentiating

the error function of Eq. (9) with respect to the ma-

trix V (n; j), and W (q; i). Only the resulting equa-

tions are listed herein. The detailed derivation can

be found in Appendix A.
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Weight updating rule for the output layer

The weights in the output layer of the STDNN are

updated by:

∆V (n; j) = η∆Y (n) ·Z(nβ + j)T , (12)

where η denotes the learning constant, and the error

signal for cell Y (n) is defined as:

∆Y(n) =
1

N
(d−O) ◦ a′(netY (n)) , (13)

where netY (n) represents the net input of cell Y (n),

netY (n) =
J−1∑
j=0

V (n; j)Z(nβ + j) . (14)

Weight updating rule for the hidden layer

The weights in the hidden layer of the STDNN are

updated by:

∆W (q; i) = η∆Z(q) ·X(qα+ i)T , (15)

where the error signal for cell Z(q) is defined as:

∆Z(q) =
∑

(n,j)∈ϕ
V (n; j)T ·∆Y (n) ◦ a′(netZ(q)) ,

(16)

where ϕ = {(n; j)|nβ+ j = q} is the set of cells con-

sisting of all fan-outs of Z(q), and netZ(q) is the

net input of cell Z(q),

netZ(q) =
I−1∑
i=0

W (q; i)X(qα+ i) . (17)

Finally, the weight changes are summed up and

the average is taken to achieve weight sharing, i.e.,

the weight updating is performed until all error sig-

nals are backpropagated and all replicated weight

changes are accumulated,

∆V (j) =
1

N

N−1∑
n=0

∆V (n; j) , (18)

∆W (i) =
1

Q

Q−1∑
q=0

∆W (q; i) , (19)

where Q and N are the numbers of replicated sets

of synapses in the output layer and hidden layer,

respectively.

For the tuning of the bias cells C(n) and B(q),

the weight updating rules listed above can still be

applied by setting the cell values as −1, and using a

bias synapse connecting it to the output cells Y (n)

and Z(q), respectively. In this manner, a cell’s bias

values are adjusted by updating its bias synapse us-

ing the above weight updating rules.

The physical meaning of the above equations can

be perceived by comparing them with those used

in the standard backpropagation algorithm. These

equations are merely in the same form as those used

in the backpropagation algorithm if we temporar-

ily neglect the fact that each node considered herein

is a vector and the weight link is a matrix, but

also drop the transpose operators that maintains the

legal multiplication of matrices and vectors.

The generalization of the 1-D STDNN to the

3-D case is easily accomplished by replacing the 1-D

indexes with 3-D indexes. Restated, only the timing

indexes, number of unit-delays, and offsets by Eq. (3)

need to be changed.

4.2. Instantaneous error method for

training STDNN

The instantaneous error method is derived by unfold-

ing the STDNN in another way, which is originally

used for the online adaptation of the FIR MLP. From

the experience of deriving of the first learning algo-

rithm, we begin with the derivation of the second one

from the 1-D STDNN, owing to its clarity and ease

of generalization.

Figure 7 illustrates the difference between these

two unfolding methods. Figure 7(a) displays a three-

layer 1-D STDNN, in which the moving offset of the

receptive field in each layer is one cell for each time.

Figures 7(b) and 7(c) depict its static equivalent net-

works unfolded by the first and second methods,

respectively. According to Fig. 7(c), many smaller

subnetworks are replicated. The number of subnet-

works equals the number of cells in the output layer

of 1-D STDNN. The instantaneous outputs are sub-

sequently generated by these subnetworks whenever

sufficient input data are coming. For example, as

shown in Fig. 7(c), Y (0) is generated by the first

subnetwork when the input sequence from X(0) to

X(3) is present. As X(4) arrives at the next time

step, the output Y (1) is generated by the second sub-

network according to the input sequence from X(1)

to X(4).
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d(0) d(1)

d(0) d(1)

X(0) X(1) X(2) X(3) X(4)

d(1)d(0)

Y(1)Y(0)

X(0) X(1) X(2) X(3) X(1) X(2) X(3) X(4)

(a)

(b)

(c)

Fig. 7. Illustration of different unfolding methods of the
1-D STDNN.

In the online adaptation of FIR MLP, the

synapses of the subnetwork are adjusted at each

time step. Restated, every time the output Y (n)

is produced, the synapses are immediately adjusted

according to the desired output d(n). In the 1-D

STDNN, however, the synapses are not immediately

adjusted at each time step. In contrast, the changes

of synapses are accumulated until the outputs of all

the subnetworks are generated. Then, the synapses

are adjusted according to the average of the accumu-

lated changes.

The difference between the structures of the

STDNN and FIR MLP leads us to adopt the

accumulated-change manner to update the synapses.

As generally known, the number of unfolded subnet-

works of the STDNN generally exceeds that of the

FIR MLP, accounting for why the online adaptation

on every subnetwork takes much longer time in the

STDNN. Therefore, when considering the training

speed, the changes of the synapses are accumulated,

and the synapses are updated once the output at the

last time step is generated.

The synapse updating rules can thus be described

by the following equations. The listed equations, al-

though in the 1-D case, can be generalized to the

3-D case by using Eq. (3). Given the desired out-

put, d(n), the instantaneous error function at time

instant n is defined by:

E(n) = (d(n)− Y (n))T (d(n)− Y (n)) . (20)

Since each subnetwork remains a static network, the

same derivation used in the static method can be

applied again. The resulting synapse updating rules

are obtained as follows.

Weight updating rule for the output layer of

the nth subnetwork

The weights in the output layer of the nth subnet-

work of the STDNN are updated by:

∆V (n; j) = η∆Y (n) ·Z(nβ + j)T , (21)

where the error signal for cell Y (n) is defined as:

∆Y (n) = (d(n)− Y (n)) ◦ a′(netY (n)) . (22)

Weight updating rule for the hidden layer of

the nth subnetwork

The weights in the hidden layer (e.g., the (L− 1)th

layer) of the nth subnetwork of the STDNN are up-

dated by:

∆W (q; i) = η∆Z(q) ·X(qα+ i)T ,

q = 0 · · ·RL−1 − 1 and i = 0 · · · IL−1 − 1 , (23)

where the range of timing index q bounded by RL−1

denotes the number of replicated sets of synapses in

each subnetwork, and the range of synapse index i

bounded by IL−1 is the size of the receptive field at

layer L− 1. With the redefined range of index q, the

error signal for cell Z(q) is the same as Eq. (16).
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The number of replicated sets of synapses in each

layer can be computed as follows. Let Rl denote the

number of replicated sets of synapses in layer l, and

I l−1 denote the length of the receptive field in layer

l − 1. Then, we have

Rl−1 = Rl×I l−1 , RL = 1 and l = L, L−1, . . . , 0 .

(24)

For example, we have N = 2, L = 2, R2 = 1, I1 = 3,

and R1 = 1 · 3 = 3 in Fig. 7(c).

Owing to that the number of replicated sets of

synapses has changed; the weight average equations,

Eqs. (18) and (19), are modified as:

∆V (j) =
1

N ·RL
N−1∑
n=0

∆V (n; j) , (25)

∆W (i) =
1

N ·RL−1

N−1∑
n=0

RL−1∑
q=0

∆W (q; i) , (26)

where N is the number of total subnetworks.

5. Recognition Experiments

Two groups of experiments are set up to evaluate the

performance of the STDNN. The first one is the mov-

ing Arabic numerals (MAN), by which, the STDNN’s

spatiotemporal shift-invariant ability is tested. The

other one is the lipreading of Chinese isolated words,

in which the practical application of the STDNN is

illustrated.

5.1. Moving arabic numerals

A good neural network should have adequate gener-

alization ability to deal with conditions that it has

never learned before. The following experiment dis-

plays STDNN’s generalization ability with respect to

input shifting in space and time using the minimum

training data. Although the experimental patterns

may be rather simpler than those in a real situation,

the designed patterns provide a good criterion for

testing the shift-invariant capability.

In this experiment, an object’s action appearing

in different spatiotemporal regions is simulated by a

man-made image sequence. Such an appearance oc-

curs when the tracking system cannot acquire the

object accurately, such that the object is not lo-

cated in the image centroid nor synchronized with

the beginning of the image sequence. Man-made

image sequences are used primarily for two reasons.

First, many motions can be produced in a short time,

thereby allowing for the experiments to be easily re-

peated. Second, some types of motions are difficult

or even impossible for a natural object to perform;

however, they can be easily performed by simula-

tion. Each of the man-made images is generated by

a 32× 32 matrix using a C-language program. Each

element of the matrix represents one pixel and each

value of the elements is either 255 (white pixel) or

0 (black pixel). Thus, the resolution of the man-

made image data is 32× 32 pixels. In addition, the

man-made bi-level image sequences are normalized

to [−1, +1] and the normalized image sequences are

used for the input data of the STDNN.

According to Fig. 8, an image sequence consists

of 16 frames, eight of which contain Arabic numer-

als. The eight numerals represent the consecutive

transition of a motion, and the motion may start at

any frame under the constraint that the whole mo-

tion is complete in an image sequence. Changing the

order in which the numerals appear in the sequence

leads to the formation of three classes of motion. The

three classes are all constituted by eight basic actions

(numerals); the first one and the second one act in

Fig. 8. All training patterns used in the MAN experiment.
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the reverse order; meanwhile, the last one acts as

the mixture of the other two. These motions can

be viewed as watching a speaker pacing a platform.

Under this circumstance, we easily concentrate our

attention to his/her facial expressions or hand ges-

tures however, the background he/she is situated in

is neglected.

The experiment is performed as follows. At the

training stage, one pattern for each class is chosen as

the training pattern, in which the starting (x, y, t)

coordinate is fixed at some point. Figure 8 depicts all

of the training patterns. The learning algorithm used

for training STDNN is the static method described in

Subsec. 4.1. It took 195 epoch until convergence. Af-

ter training, the patterns with the numeral’s (x, y, t)

coordinates randomly moved are used to test the per-

formance of STDNN.

Three sets of motions are tested according to the

degree of freedom that numerals are allowed to move

in a frame. The numerals in the first set are moved in

a block manner, i.e., eight numerals are tied together,

and their positions are changed in the same manner.

In the second set of motion, the numerals are moved

in a slowvarying manner, in which only the 1st, 3rd,

5th, and 7th numerals are randomly moved, and the

positions of the rest are bound to the interpolation

points of the randomly moved ones (e.g., the 2nd

numeral is located at the middle point of the new

positions of the 1st and 3rd numerals). In the last

one, each numeral is freely moved in the frame in-

dependently. Basically, the first test set simulates

the stationary motion, the second one simulates the

nonstationary motion, and the last one simulates

the highly nonstationary motion. Some patterns of

these test sets are shown in Figs. 9, 10, and 11,

respectively.

The recognition rates of STDNN on the three test

sets, in which each class contains 30 patterns, are

85%, 80%, and 70%, respectively. Several correctly-

recognized patterns are shown in Figs. 9 through 11.

Table 1 lists STDNN’s configuration used in this ex-

periment, in which H represents the number of hid-

den nodes of the cell in each layer; (It, Iy, Ix) is the

size of the receptive box; (αt, αy, αx) denotes the

moving offset of the receptive box; and (Qt, Qy, Qx)

denotes the numbers of cells along the t-axis, y-axis,

and x-axis.

Although the recognition rate in the MAN exper-

iment is not very good, it is reasonable if we realize

the disproportion between the hyperspace spanned

Fig. 9. Some stationary motion patterns in the first test set.

Fig. 10. Some nonstationary motion patterns in the second test set.
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Fig. 11. Some highly nonstationary motion patterns in the third test set.

Table 1. The STDNN’s network configuration in the MAN
experiment.

Network Parameters
H (It, Iy, Ix) (αt, αy, αx) (Qt, Qy, Qx)

Layer 0 1 (4, 7, 6) (2, 2, 2) (16, 32, 32)

Layer 1 6 (3, 5, 4) (1, 2, 2) (7, 13, 14)

Layer 2 6 (2, 3, 3) (1, 1, 1) (5, 5, 6)

Layer 3 3 — — (4, 3, 4)

by only three training patterns and that spanned by

90 test patterns. Variations in the test image se-

quences include translations in space and time, as

well as changes of the numerals’ order. While in the

training patterns, we only have a serial of numerals

fixed at a specific time and space. The recognition

rate can be improved by increasing the number of

training patterns to cover the input space; however,

this is not a desired situation. While considering

a real situation, e.g., the pacing speaker mentioned

earlier, it is impossible to gather a sufficient number

of training patterns to cover the whole hyperspace for

the speaker to pass through all of the time. There-

fore, in this work we can merely utilize the limited

training data to earn the maximum recognition rate,

i.e., enlarge the generalization ability of the neural

network as much as possible.

On the other hand, the variations of the test pat-

terns can be narrowed slightly under some realistic

conditions. Every numeral in the final test set is

freely moved; however, under some circumstances,

the object might not move so fast. In particular,

the human motion in the consecutive image sequence

moves smoothly as usual. Therefore, the second set

of test patterns, in which the moving of numerals is

slowvary, is the closest to the real case.

5.2. Lipreading

The following experiment demostrates the feasibil-

ity of applying the system to lipreading. In par-

ticular, the performance of STDNN is compared

with that of the lipreading recognition system pro-

posed by Waibel et al.11,12 Waibel’s system is actu-

ally a bimodal speech recognition system in which

two TDNNs are used to perform speech recogni-

tion and lipreading. In their lipreading system, two

types of features, i.e., down-sampled images and 2D-

FFT transformed images, are used. STDNN should

be compared with Waibel’s system for two reasons.

First, STDNN and TDNN are neural-network-based

classifiers. Second, TDNN has the time-shift invari-

ant ability and 2D-FFT features are spatial-shift in-

variant: both of which are shift-invariant criteria of

STDNN.

The STDNN can be viewed as a classifier or as

a whole recognition system (i.e., a classifier along

with a feature extraction subsystem), depending on

the type of input data. The following experiments

compare the performance of STDNN with that of

Waibel’s lipreading system based on the standpoints

of the classifier or the whole recognition system. Be-

sides, the comparison of the two learning algorithms

for the STDNN is also discussed here. Most re-

searchers involving FIR MLP learning algorithms

compare the performance of their algorithms using

simple prediction problems. Herein, an attempt is

made to make such comparisons in terms of the real

lipreading application, which is a more complex case.

5.2.1. Experimental conditions

The lip movements are recorded by a bimodal recog-

nition system developed.20 During the recording, the

speaker pronounces an isolated-word in front of the
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CCD camera that grabs the image sequence at the

sampling rate of 66 ms per frame. The recording

environment is under a well-lit condition and the

speaker is seated before the camera at an appropri-

ate distance. An image sequence contains 16 frames,

and each frame is of size, 256 × 256. The image

sequence is then automatically preprocessed by an

area of interest (AOI) extraction unit, in which the

lip region is extracted from the speaker’s face. For

the input data in the down-sampled image type, the

extracted images are rescaled to the size of 32× 32.

On the other hand, for the input data in the 2D-FFT

type, the extracted images are rescaled to the size of

64 × 64; in addition, 13 × 13 FFT coefficients in a

low-frequency area are selected from the magnitude

spectrum of the 64×64 2D-FFT transformed image.

Whether the spatial-shift invariant ability is nec-

essary if an AOI extraction unit is adopted must be

addressed. Such an ability is still deemed necessary

as the extracted lip region is not always accurate.

Therefore, the recognition with spatial-shift invari-

ant ability is still necessary. Moreover, the inherent

nature of the speech hinders the lipreading, owing

to the shift or scale distortions in the time domain

compared with other kinds of motions. Therefore,

in addition to the spatial-shift invariant ability, the

time-shift invariant ability is also necessary in the

lipreading task.

In this experiment, two Chinese vocabulary

words are used for lipreading. One contains the

(a) Chinese digit: 1. 

(b) Chinese digit: 2. 

(c) Chinese digit: 3.

Fig. 12. Chinese digits: 1 to 6.
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(d) Chinese digit: 4. 

(e) Chinese digit: 5.

(f) Chinese digit: 6. 

Fig. 12 (cont’d )

Chinese digits from 1 to 6, and the other contains

acoustically confusable words consisting of 19 Chi-

nese words.d These two vocabulary words are re-

ferred here as Chinese digits and confusable words,

respectively. Figure 12 presents the six image se-

quences of Chinese digits.

Adhering to the same belief mentioned in the

MAN experiment, we attempt to use as few training

patterns as possible to test the generalization ability

of TDNN and STDNN. In our experiment, five train-

ing patterns are used for each word. In the testing,

two sets of patterns are used. One is recorded at

the same time as for the training patterns, but not

used for training. The other is recorded on another

day. These two sets are referred to herein as the test

set and new test set, respectively. In the test set,

there are 5 patterns for each word in Chinese digits

and confusable words. In the new test set, there are

15 patterns for each word of the Chinese digits, and

10 patterns for each word of the confusable words.

Figure 13 displays the example patterns of Chinese

digits recorded at different time intervals.

Two test sets are used to compare the per-

formance of the systems under varying recording

dSome words can be easily confused acoustically; however, they are distinct in lip movements. With the auxiliary of lipreading, the
bimodal speech recognition system can enhance the recognition rate of these words.
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(a) Pattern in the training set.

(b) Pattern in the test set.

(c) Pattern in the new test set.

Fig. 13. Patterns of Chinese digits in the training set, test set, and new test set.

conditions. Acquired from the experience in develop-

ing an online bimodal speech recognition system,20

the training data recorded at the same time are

frequently quite uniform, so that the condition in

the training set does not always correspond to the

condition in an online environment. Although the

recording condition can be maintained as uniform as

possible, it cannot remain constant all of the time.

This problem can be solved by enlarging the train-

ing set. However, constructing a large training set

is frequently time consuming. A more practical and

efficient means of solving this problem is to improve

the learning ability of the classifier or select more

robust features, or both.

5.2.2. Results of experiment

Tables 2 and 3 list the network configurations used

for Chinese digits and confusable words recognition,

respectively. By combining different types of input

data and neural networks, four networks can be con-

structed for each vocabulary word. For all the experi-

ments, the learning constant is 0.05, and the moment

term is 0.5. The training process is stopped once the

mean square error is less than 0.5.

According to these tables, TDNN is in fact a spe-

cial case of STDNN. The input layer of the TDNN

is treated as 16 separate image frames, and the con-

textual relation in space is lost after the input data

are passed to the hidden layer.
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Table 2. Network configurations used for Chinese digit recognition.

Down-sampled

TDNN STDNN

H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx) H (It, Iy, Ix) (αt, αy, αx) (Qt, Qy, Qx)

Layer 0 1 (5, 32, 32) (1, 0, 0) (16, 32, 32) 1 (4, 20, 20) (1, 2, 2) (16, 32, 32)

Layer 1 3 (5, 1, 1) (1, 0, 0) (12, 1, 1) 5 (7, 4, 4) (1, 1, 1) (13, 7, 7)

Layer 2 6 — — (8, 1, 1) 6 — — (7, 4, 4)

2D-FFT

TDNN STDNN

H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx) H (It, Iy, Ix) (αt, αy, αx) (Qt, Qy, Qx)

Layer 0 1 (7, 13, 13) (1, 0, 0) (16, 13, 13) 1 (4, 9, 9) (1, 1, 1) (16, 13, 13)

Layer 1 7 (4, 1, 1) (1, 0, 0) (10, 1, 1) 5 (7, 5, 5) (1, 1, 1) (13, 5, 5)

Layer 2 6 — — (7, 1, 1) 6 — — (7, 1, 1)

Table 3. Network configurations used for confusable-word recognition.

Down-sampled

TDNN STDNN

H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx) H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx)

Layer 0 1 (6, 32, 32) (1, 0, 0) (16, 32, 32) 1 (5, 10, 15) (1, 2, 2) (16, 32, 32)

Layer 1 5 (5, 1, 1) (1, 0, 0) (11, 1, 1) 2 (7, 7, 7) (1, 1, 1) (12, 12, 9)

Layer 2 19 — — (7, 1, 1) 3 (6, 6, 3) (1, 1, 1) (6, 6, 3)

Layer 3 — — — — 19 — — (1, 1, 1)

2D-FFT

TDNN STDNN

H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx) H (It, Iy, Ix) (αt, αy , αx) (Qt, Qy, Qx)

Layer 0 1 (7, 13, 13) (1, 0, 0) (16, 13, 13) 1 (4, 9, 9) (1, 1, 1) (16, 13, 13)

Layer 1 10 (4, 1, 1) (1, 0, 0) (10, 1, 1) 3 (7, 5, 5) (1, 1, 1) (13, 5, 5)

Layer 2 19 — — (7, 1, 1) 19 — — (7, 1, 1)

For Chinese digits, Tables 4 and 5 summarize the

experimental results for the networks trained by the

static method and the instantaneous error method,

respectively. Tables 6 and 7 summarize the results

for confusable words.

According to the concept of pattern recognition,

the performance of a recognition system is deter-

mined by the feature selection and classifier design.

To isolate the effects caused by these two factors, the

results of the experiment are compared with those of

the classifier and the whole recognition system.

From the perspective of the classifiers, STDNN

is better than TDNN according to the following ob-

servations. In this case, STDNN and TDNN are

compared on the basis of the same input features.

For the down-sampled image sequences, STDNN’s

recognition rate is 15%∼30% higher than that of the

TDNN in terms of Chinese digits, and 0%∼30% in

confusable words. This result is not surprising be-

cause only TDNN has the time-shift invariant recog-

nition ability. TDNN cannot overcome the possible

spatial shift in the down-sampled images. In con-

trast, if the input data are the 2D-FFT transformed

images, STDNN’s improvement in recognition rate

is not so much. Owing to the space-shift invariant

property of 2D-FFT, TDNN would not greatly suf-

fer the space-shift problem. Nevertheless, the recog-

nition rate of STDNN is still 5%∼12% higher than
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Table 4. Recognition rates of Chinese digits, trained by the static method.

Feature Down-sampled 2D-FFT

Classifier TDNN STDNN TDNN STDNN

Test set (30 patterns) 83.3% 100% 93.3% 93.3%

New test set (90 patterns) 62.2% 77.8% 61.1% 70%

Training epoch 245 2680 75 115

Table 5. Recognition rates of Chinese digits, trained by the instantaneous error
method.

Feature Down-sampled 2D-FFT

Classifier TDNN STDNN TDNN STDNN

Test set (30 patterns) 83.3% 100% 93.3% 93.3%

New test set (90 patterns) 60% 90% 64.4% 75.6%

Training epoch 75 110 25 20

Table 6. Recognition rates of confusable words, trained by the static method.

Feature Down-sampled 2D-FFT

Classifier TDNN STDNN TDNN STDNN

Test set (95 patterns) 64.2% 72.6% 85.3% 87.4%

New test set (190 patterns) 14.7% 44.7% 28.9% 33.7%

Training epoch 570 50 200 225

Table 7. Recognition rates of confusable words, trained by the instantaneous
error method.

Feature Down-sampled 2D-FFT

Classifier TDNN STDNN TDNN STDNN

Test set (95 patterns) 74.7% 74.7% 86.3% 88.4%

New test set (190 patterns) 14.2% 48.9% 27.4% 39.5%

Training epoch 215 20 55 55

that of the TDNN in all the new test sets. This is

due to the STDNN’s high generalization ability as

discussed later.

Second, from the perspective of the recognition

systems, STDNN performs better than Waibel’s sys-

tem in most experiments except for the two experi-

ments on the test sets of confusable words. In this

case, STDNN uses the down-sampled images as fea-

tures, while TDNN uses the 2D-FFT transformed

images as features. For Chinese digits, STDNN has

a higher recognition rate than Waibel’s system by

6.7% in the test set, and 16%∼26% in the new test

set. For confusable words, STDNN has a lower recog-

nition rate than Waibel’s system by 13% in the test

set. However, the recognition rate of STDNN is

16%∼21% higher than that of Waibel’s system in

the new test set.

Of particular concern is the comparison of per-

formance of the whole recognition system, since a

unified structure of the motion recognition system,
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that embodies a feature extraction unit and a classi-

fier, is one of STDNN’s goals. From the perspective

of classifier the performance comparison attempts to

isolate the effect of different features used in these

systems. Experimental results indicate that STDNN

possesses a better ability to extract more robust fea-

tures, but also to learn more information from the

training data.

For other lipreading-related research, the recogni-

tion rates vary significantly due to the different spec-

ifications and experimental conditions of their sys-

tems. Besides, most lipreading systems are auxiliary

to a speech recognition system and, thus, the recog-

nition rate of the whole system is of primary concern.

Petajan’s speech recognition system21 is the first

documented system that contains a lipreading sub-

system. According to the results of that study, the

bimodal speech recognition system achieved a recog-

nition rate of 78%, while the speech recognizer alone

has only a recognition rate of 65% for a 100-isolated

words, speaker-dependent system. In our available

reports on the recognition rates of the lipreading

systems, Pentland22 achieved a recognition rate of

70% for English digits in a speaker-independent sys-

tem. Goldschen23 achieved a recognition rate of

25% for 150 sentences in a speaker-dependent sys-

tem. Waibel et al.12 achieved a recognition rate of

30%∼53% for 62 phonemes or 42 visemes.e Generally

speaking, although the lipreading system alone does

not work very well, whether the goal of lipreading

is auxiliary to speech recognition for achieving more

robust recognition rate is irrelevant.

On the other hand, comparing the two differ-

ent learning algorithms reveals that the instanta-

neous error method converges more rapidly than the

static method by three- to fivefold. In particular,

the training epochs are reduced from 2680 to 110 in

the experiment of Chinese digits with down-sampled

images.f Moreover, in most of our experiments, the

network trained by the instantaneous error method

has a higher recognition rate than that trained by

the static method.

6. Conclusion

This work demonstrates STDNN’s space-time-

domain recognition ability. In the MAN experiment,

STDNN possesses the spatiotemporal shift-invariant

ability learned from the minimum training data.

While in the lipreading experiment, STDNN has

a higher recognition rate and better generalization

ability than the TDNN-based system.12 STDNN has

several merits. First, it is a general approach to mo-

tion recognition since no a priori knowledge on the

application domain is necessary. Second, the feature

extraction capacity is embedded, therefore requiring

minimum preprocessing. The input data are nearly

the original image sequences except for the downsam-

pling preprocessing. Third, STDNN possesses shift-

invariant ability both in space and time domains

such that the recourse for the tracking preprocess

can be eliminated. Nevertheless, STDNN still has

some drawbacks. For instance, a significant amount

of time is required to process data, particularly in

training. In training the STDNN on the downsam-

pled image sequence, which is the worst case, it

takes approximately one hour to run 6∼8 epochs on

Sparc-20.g STDNN’s processing time depends on its

configurations. If the size and moving offset of the

receptive box is small, searching through the spa-

tiotemporal cuboids requires more time. However,

the cost in processing time gains a higher general-

ization ability. Therefore, a trade-off occurs between

the recognition rate and recognition speed. Another

shortcoming is that the other invariant criteria in

space and time such as rotation and scaling invari-

ance, have not been treated in this research yet.

To increase the processing speed, STDNN’s scale

must be reduced, particularly in the input layer. As

is generally known, humans do not see a moving pixel

but a moving region, accounting for why some un-

supervised learning mechanisms can be used to re-

place the input layer so that the redundancy can be

reduced precedently. On the other hand, to treat

other invariant criteria, the shape of the receptive

box can be adapted in the learning stage so that the

eA distinct characteristic of lipreading is that the number of distinguishable classes is not directly proportional to the number of
words in speech. For instance, /b/ and /p/ are distinguishable in speech, but they are difficult to be distinguished in lipreading.
Therefore, some researchers define the visemes as the distinguishable classes by lipreading. The relation between viseme set and
phoneme set is often 1-to-n mapping.
fThe motivation for deriving the instantaneous error method is partially attributed due to the long training time taken in the static
method.
gWe have never preceded our experiments on the computer with vector processor, which is suitable for implementing STDNN.
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deformation in the space-time domain can be

overcome.

The novel constituents of STDNN provide further

insight into its potential applications. The STDNN

proposed herein suggests a neural network model ca-

pable of dealing with the 3-D dynamic information.

This network can classify the patterns described by

the multidimensional information which varies dy-

namically in a 3-D space. Besides, for the multidi-

mensional signal processing, STDNN can be treated

as a nonlinear 3-D FIR filter. On the other hand, the

cells and synapses provide a viable means of con-

structing a more complex neural network that can

treat higher-dimensional dynamic information.

Appendix A

Derivation Details of Learning Algorithms

We proceed with the derivation by expanding

Eqs. (6)–(9) to the scalar individuals, and differen-

tiate these scalar equations by the chain rule. The

results of these scalar individuals are then collected

into vectors or matrices to form the equations given

in Sec. 4. All of the denotations used here follow

those used in Sec. 4, except that the numbers of hid-

den nodes in X, Y , and Z are redenoted as H0, H1,

and H2, which replace HL−2, HL−1, and HL, re-

spectively. The expansions of the cells referred to in

Eqs. (6)–(9) are:

Y (n) =



Y1(n)

...

Yh2(n)

...

YH2(n)


Z(q) =



Z1(q)

...

Zh1(q)

...

ZH1(q)



X(m) =



X1(m)

...

Xh0(m)

...

XH0(m)



(27)

and the expansions of the synapses are:

V (n; j) =



V11(n; j) · · · V1h1(n; j) · · · V1H1(n; j)

...
...

...

Vh21(n; j) · · · Vh2h1(n; j) · · · Vh2H1(n; j)

...
...

...

VH21(n; j) · · · VH2h1(n; j) · · · VH2H1(n; j)


, (28)

W (q; i) =



W11(q; i) · · · W1h0(q; i) · · · W1H0(q; i)

...
...

...

Wh11(q; i) · · · Wh1h0(q; i) · · · Wh1H0(q; i)

...
...

...

WH11(q; i) · · · WH1h0(q; i) · · · WH1H0(q; i)


. (29)

With these expansions, the scalar form of

Eqs. (6)–(9) are written as follows:

netYh2(n) =
∑
j

∑
h1

Vh2h1(n; j)Zh1(nβ + j) , (30)

Yh2(n) = a(netYh2(n)) , (31)

netZh1(n) =
∑
i

∑
h0

Wh1h0(q; i)Xh0(qα+ i) , (32)

Zh1(q) = a(netZh1(q)) , (33)

Oh2 =
1

N

∑
n Yh2(n) , (34)

E =
1

2

∑
h2

(dh2 −Oh2)2 . (35)

From now on, we can apply the same procedures used

in the derivation of the standard backpropagation
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algorithm to derive the updating rules for the

STDNN.

For the output layer, we have:

∂E

∂Vh2h1(n; j)
=

∂E

∂Oh2

∂Oh2

∂Yh2(n)

∂Yh2(n)

∂netYh2(n)

× ∂netYh2(n)

∂Vh2h1(n)
. (36)

Let

δYh2 (n) ≡ − ∂E

∂Oh2

∂Oh2

∂Yh2(n)

∂Yh2(n)

∂netYh2(n)

= (dh2 −Oh2)
1

N
a′(netYh2(n)) , (37)

and
∂netYh2(n)

∂Vh2h1(n)
= Zh1(nβ + j) . (38)

The scalar weight adjustment in the output layer can

be written as:

∆Vh2h1(n; j) = −η ∂E

∂Vh2h1(n; j)

= ηδYh2 (n)Zh1(nβ + j) . (39)

By assembling δYh2 (n) in Eq. (37) for all h2, we get,

∆Y (n) =



δY1(n)

...

δYh2 (n)

...

δYH2 (n)



=
1

N



d1 −O1

...

dh2 −Oh2

...

dH2 −OH2


◦



a′(netY1(n))

...

a′(netYh2(n))

...

a′(netYH2(n))


=

1

N
(d−O) ◦ a′(netY (n)) , (40)

where ◦ is the operator of one-by-one array multipli-

cation defined in Eq. (5). Thus, the synapse adjust-

ment in the output layer can be obtained as:

∆V (n; j) = η∆Y (n) ·Z(nβ + j)T . (41)

For the hidden layer, we have,

∂E

∂Wh1h0(q; i)
=
∑
h2

∂E

∂Oh2

∑
(n,j)∈ϕ

∂Oh2

∂Yh2(n)

× ∂Yh2(n)

∂netYh2(n)

∂netYh2(n)

∂Zh1(nβ + j)

× ∂Zh1(nβ + j)

∂Wh1h0(q; i)
. (42)

Using the definition of δYh2 (n) in Eq. (37) and chang-

ing the order of summation, Eq. (42) is reduced

to:

∂E

∂Wh1h0(q; i)
= −

∑
(n,j)∈ϕ

∑
h2

δYh2 (n)

× ∂netYh2(n)

∂Zh1(nβ + j)

× ∂Zh1(nβ + j)

∂Wh1h0(q; i)
, (43)

where ϕ = {(n; j)|nβ + j = q} is the set of all fan-

outs of hidden node Zh1(q). The remaining partial

terms are obtained by:

∂netYh2(n)

∂Zh1(nβ + j)
= Vh2h1(n; j) , (44)

and

∂Zh1(nβ + j)

∂Wh1h0(q; i)
=

∂Zh1(q)

∂Wh1h0(q; i)

= a′(netZh1(q))Xh0(qα+ i) . (45)

The final result of Eq. (42) is:

∂E

∂Wh1h0(q; i)
= −

∑
(n,j)∈ϕ

∑
h2

δYh2 (n)Vh2h1(n; j)

× a′(netZh1(q))Xh0(qα+ i)

= −δZh1 (q)Xh0(qα+ i) , (46)

where

δZ
h1

(q) =
∑

(n,j)∈ϕ

∑
h2

δY
h2

(n)Vh2h1(n; j)a′(netZh1(q)) .

(47)
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Collecting Eq. (47) for all h1, we can get the error

signals of the cell Z(q) as:

∆Z(q) =



δZ1(q)

...

δZh1 (q)

...

δZH1 (q)



=
∑

(n,j)∈ϕ



∑
h2

δYh2 (n)Vh21(n; j)

...∑
h2

δYh2 (n)Vh2h1(n; j)

...∑
h2

δYh2 (n)Vh2H1(n; j)



◦



a′(netZ1(q))

...

a′(netZh1(q))

...

a′(netZH1(q))


=

∑
(n,j)∈ϕ

V T (n; j) ·∆Y (n) ◦ a′(netZ(q)) .

(48)

Therefore, the weight adjustment for the hidden

layer is derived as:

∆W (q; i) = η∆Z(q) ·X(qα+ i)T . (49)
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