1.15. Let N_1 be this NFA:

![Diagram of NFA]

Then follow the construction of this exercise, we get N:

![Diagram of NFA]

It is easy to check that $L(N_1) = 11(111)^*$ (denote as A_1) and $111 \notin A_1^*$. But $111 \in L(N)$.

1.30. In fact, s can be pumped. Let $x = \epsilon, y = 0^p$ and $z = 1^p$. It is easy to check $s = xyz$ and for every integer $i \geq 0$, $xy^iz \in 0^*1^*$. (Note: the “easy” part should be written in detail if you would like to have 10pts.)

1.31. Since A is regular, there exists a DFA $D = (Q, \Sigma, \delta, q, F)$ recognizing A. We prove A^R is regular by constructing an ϵ-NFA N recognizing it. Define $N = (Q \cup \{q'\}, \Sigma, \delta', q', \{q\})$ where $\delta'(q', \epsilon) = F$ and for $x \in Q$ and $a \in \Sigma$, $\delta'(x, a) = \{ y : \delta(y, a) = x \}$. $\delta'(\cdot, \cdot) = \phi$ on all the other inputs. We verify that N recognizes A^R by prove the following two facts.

- N accepts every string $\omega \in A^R$
- Every string ω' accepted by N is in A^R.

For any string $\omega = o_1 \ldots o_\ell \in A$ of length ℓ and $i > 0$, let $q_0 = q$ and $q_i = \delta(q_{i-1}, o_i)$. Since ω can be accepted by D, we have $q_\ell \in F$. It is easy to check $q', q_\ell, q_{\ell-1}, \ldots, q_1, q_0$ is an accepting path in N. ω^R must be accepted by N, thus we conclude that N accepts every string in A^R.

For any string ω' accepted by N, there exists an accepting path q', q_1, \ldots, q_m in N corresponding to ω' where $q_1 \in F$ and $q_m = q$. It is easy to check that $q_m, q_{m-1}, \ldots, q_1$ is also an accepting path in D and the corresponding string is exactly ω'^R.

1.32. Construct a 3 state NFA $N = (\{s, y, n\}, \Sigma_3, \delta, s, \{y\})$ where δ is defined as
The rest is to show that N recognizes B^R. Let $A^R = \{ \omega : \omega \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \in B^R \}$ and $C^R = \Sigma^* - (B^R \cup A^R)$. Note that in any string of length n in A, the difference between the bottom row and the sum of top two row is 2^n. Similarly, in any string of length n in C, the difference between the bottom row and the sum of top two row is not divisible 2^n.

First, we claim string ω of length $n > 0$, we have

$$\delta^*(s, \omega) = \begin{cases} \{n\}, & \omega \in A^R \\ \{y\}, & \omega \in B^R \\ \{\}, & \omega \in C^R \end{cases}$$

We prove this fact by induction on the string length. To check the induction basis, $n = 1$, is easy. Assume this claim is true for $n < k$. Consider $n = k$ and $\omega = \omega' a$ where $a \in \Sigma_3$. If $\omega' \in C^R$, then ω is also in C^R since the lower digits do not have difference divisible by 2^k. If $\omega' \in B^R$ or $\omega' \in A^R$, then we know the claim holds by carefully checking the transition table. (Note: the “carefully” part consists of several cases but not hard to complete.)

At last, observe that ϵ would be trapped in s. We can conclude that N recognizes B^R, hence B is regular.

1.46.c. Suppose L is regular, then by the fact Σ^* is regular we have $\bar{L} := \Sigma^* \setminus L$ must be regular. Let p be the pumping length for \bar{L}. Observe that $1^n01^n \in \bar{L}$ $\forall n \in \mathbb{Z}^+$, so $s := 1^p01^p \in \bar{L}$. Then the pumping lemma implies that $s = xyz$ with $|y| > 0$ and $|xy| \leq p$, which means $y = 1^k$ where $1 \leq k \leq p$. The pumping lemma also implies $\forall i \geq 0$, $xy^iz \in \bar{L}$, hence, $1^{p-k}01^p \in \bar{L}$. But $p - k \leq p - 1$, which is a contradiction! So L can’t be regular.