Hyperelliptic Curves

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University

ECC 2008
Outline

- Basic definitions and properties
- Polynomial and rational functions
- Divisors
- HCDLP on $J_C(K)$
- Representing divisors
- Adding reduced divisors
Basic definitions and properties [1/3]

- Def (hyperelliptic curve):
 - Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ be the algebraic closure of \mathbb{K}.
 - A hyperelliptic curve C of genus g over \mathbb{K} ($g \geq 1$) is an equation of the form in $\mathbb{K}[x, y]$

 $C : y^2 + h(x)y = f(x)$...(1)

 where

 - $h(x) \in \mathbb{K}[x]$ is a polynomial of degree at most g,
 - $f(x) \in \mathbb{K}[x]$ is a monic polynomial of degree $2g+1$,
 - No solution $(u,v) \in \overline{\mathbb{K}} \times \overline{\mathbb{K}}$ simultaneously satisfies the equation $y^2 + h(x)y = f(x)$ and the partial derivative equations $2y + h(x) = 0$, $h'(x)y - f'(x) = 0$.
Basic definitions and properties [2/3]

- Def (rational points, point at infinity, finite points)
 - The set of \overline{K}-rational points on C, denoted $C(\overline{K})$, is the set of all points $(x, y) \in \overline{K} \times \overline{K}$ satisfy the equation (1) of the curve C, together with a special point at infinity denoted ∞.
 - The set of points $C(\overline{K})$ will simply be denoted by C.
 - The points in C other than ∞ are called finite points.
Basic definitions and properties [3/3]

- Def (opposite, special and ordinary points)
 - Let $P = (x, y)$ be a finite point on a curve C.
 - The opposite of P is the point $\tilde{P} = (x, -y - h(x))$ (\tilde{P} is indeed on C).
 - Define $\infty = \infty$.
 - If a finite point P satisfies $P = \tilde{P}$ then the point is said to be special; otherwise, the point is said to be ordinary.
Polynomial and rational functions [1/2]

- Def (coordinate ring, polynomial function)
 - The coordinate ring of C over \overline{K}, denoted $\overline{K}[C]$, is the quotient ring
 \[
 \overline{K}[C] = \overline{K}[x, y]/(y^2 + h(x)y - f(x))
 \]
 where $(y^2 + h(x)y - f(x))$ denotes the ideal in $\overline{K}[x, y]$ generated by the polynomial $y^2 + h(x)y - f(x)$.
 - An element of $\overline{K}[C]$ is called a polynomial function on C.

- Lemma
 - The polynomial $y^2 + h(x)y - f(x)$ is irreducible over \overline{K}, and hence $\overline{K}[C]$ is an integral domain.
Polynomial and rational functions [2/2]

- Def (function field, rational functions)
 - The function field $\overline{K}(C)$ of C over \overline{K} is the field of fractions of $\overline{K}[C]$.
 - The elements of $\overline{K}(C)$ are called rational functions on C.

...
Divisors [1/8]

- Def (divisor, degree, order):
 - A divisor D is a formal sum of points in C, $D = \sum_{P \in C} m_P P$, $m_P \in \mathbb{Z}$
 - The degree of D, $\deg D = \sum_{P \in C} m_P$
 - The order of D at P is the integer m_P, we write $\text{ord}_P(D) = m_P$

- The set of all divisors, denoted \mathcal{D}, forms an additive group under the addition rule:
 $$\sum_{P \in C} m_P P + \sum_{P \in C} n_P P = \sum_{P \in C} (m_P + n_P)P$$
 - The set of all divisors of degree 0, denote \mathcal{D}^0, is the subgroup of \mathcal{D}.
Divisors [2/8]

- **Def (gcd of divisors):**
 - Let \(D_1 = \sum_{P \in C} m_P P \) and \(D_2 = \sum_{P \in C} n_P P \) be two divisors.

\[
gcd(D_1, D_2) = \sum_{P \in C} \min(m_P, n_P) P - \left(\sum_{P \in C} \min(m_P, n_P) \right)_\infty
\]

- \(\text{Gcd}(D_1, D_2) \in D^0 \)

- **Def (divisor of a rational function):**
 - Let \(R \in K(C)^* \). The divisor of \(R \) is

\[
div(R) = \sum_{P \in C} (\text{ord}_P R) P
\]
Divisors [3/8]

- Example
 - If $P = (x_1, y_1)$ is an ordinary point on C, then
 $$\text{div}(x - x_1) = P + \tilde{P} - 2\infty$$
 - If $Q = (x_2, y_2)$ is a special point on C, then
 $$\text{div}(x - x_2) = 2Q - 2\infty$$
Divisors [4/8]

- Def (principal divisors, jacobian, support):
 - A divisor $D \in D^0$ is called a principal divisor if $D = \text{div}(R)$ for some rational function $R \in \overline{K(C)}^*$.
 - The set of all principal divisors, denoted P, is a subgroup of D^0.
 - The quotient group $J = D^0/P$ is called the jacobian of the curve C.
 - If $D_1, D_2 \in D^0$ and $D_1 - D_2 \in P$, then D_1 and D_2 are said to be equivalent divisors; we write $D_1 \sim D_2$.
 - Let $D = \sum_{P \in C} m_P P$ be a divisor. The support of D is the set $\text{supp}(D) = \{P \in C | m_P \neq 0\}$.

Rong-Jaye Chen

Hyperelliptic Curves

ECC 2008

11 / 29
Divisors [5/8]

- A divisor D is said to be defined over K, if

 $$D^\sigma = \sum m_P P^\sigma = D$$

 for all automorphisms σ of \overline{K} over K, where

 $P^\sigma = (\sigma(x), \sigma(y))$ if $P = (x, y)$, and $\infty^\sigma = \infty$.

- This implies that a divisor defined over K can include
 some points P_i in its support which are not defined over K.

- The Jacobian defined over a finite field K is a finite
 abelian group $J_C(K)$.

Divisors [6/8]

- Def (semi-reduced divisor):
 - A semi-reduced divisor is a divisor of the form \(D = \sum m_i P_i - (\sum m_i) \infty \), where
 - \(m_i \geq 0 \)
 - \(P_i \)'s are finite points s.t. when \(P_i \in \text{supp}(D) \) then \(\tilde{P}_i \not\in \text{supp}(D) \), unless \(P_i = \tilde{P}_i \), in which case \(m_i = 1 \).

- Lemma:
 - For each divisor \(D \in D^0 \) there exists a semi-reduced divisor \(D_1 \in D^0 \) such that \(D \sim D_1 \).
Divisors [7/8]

- **Def (reduced divisor):**
 - Let $D = \Sigma m_i P_i - (\Sigma m_i)\infty$ be a semi-reduced divisor. If $\Sigma m_i \leq g$ (where g is the genus of C) then D is called a reduced divisor.
 - The weight of a reduced divisor $D = \text{div}(a, b)$ is the degree of the polynomial a.

- **Theorem:**
 - For each divisor $D \in D^0$ there exists a unique reduced divisor D_1 such that $D \sim D_1$.
Divisors [8/8]

- **Theorem:**
 - Let C be a hyperelliptic curve of genus g defined over a finite field F_q with q elements. Then

 \[(\sqrt{q} - 1)^{2g} \leq \# J_C(F_q) \leq (\sqrt{q} + 1)^{2g}\]

 and

 \[|\# C(F_q) - (q + 1)| \leq 2g \sqrt{q}\]

- **Hasse theorem:**

 \[\# E(F_q) = q + 1 - t, \quad |t| \leq 2\sqrt{q}\]
HCDLP on $J_C(K)$ [1/2]

- **HCDLP**: (Hyperelliptic curve discrete logarithm problem)
 - Let a divisor D_1 in $J_C(F_q)$ with known order N, and D_2 in $<D_1>$
 - To find an integer λ s.t. $D_2 = \lambda D_1$ is hard.
HCDLP on $J_C(K)$ [2/2]

- A genus 2 hyperelliptic curve over R:

 \[C: y^2 = x^5 - 5x^3 + 4x \]

- \[y = a_3x^3 + a_2x^2 + a_1x + a_0 \]

\[
(P_1 + P_2 - 2\infty) + (P_3 + P_4 - 2\infty) = (P_5 + P_6 - 2\infty)
\]
Representing divisors [1/5]

- **Theorem:**
 - \(D = \sum m_i P_i - (\sum m_i)^\infty \) be a semi-reduced divisor, where \(P_i = (x_i, y_i) \).
 - Let \(a(x) = \Pi (x-x_i)^{m_i} \).
 - Let \(b(x) \) be the unique polynomial satisfying:
 - \(\deg_x b < \deg_x a \)
 - \(b(x_i) = y_i \) for all \(i \) for which \(m_i \neq 0 \).
 - \(a(x) | (b(x)^2 + b(x)h(x) - f(x)) \).
 - Then \(D = \gcd (\text{div}(a(x)), \text{div}(b(x)-y)) \).
 - \(\gcd (\text{div}(a(x)), \text{div}(b(x)-y)) \) will usually abbreviated to \(\text{div}(a(x)), b(x)-y) \) or, more simply, to \(\text{div}(a, b) \).
Representing divisors [2/5]

- Lemma
 - Let $a(x), b(x) \in \overline{K}[x]$ be such that $\deg_x b < \deg_x a$. If $a \mid (b^2 + bh - f)$ then $\text{div}(a, b)$ is semi-reduced.

- The neutral element of J_C is the unique weight zero divisor $\text{div}(1, 0)$
Representing divisors [3/5]

- Genus 2 curve in $\mathbb{F}_3[x, y]$

 $C: y^2 = x^5 + 2x^4 + 1$

- $F_{3^2} \cong \mathbb{F}_3[x]/(x^2 + 1) = \{0, 1+i, 2i, 1+2i, 2, 2+2i, i, 2+i, 1\}$

- The F_{3^2} rational points $C_{F_{3^2}}$:
 - $P_1 = (0, 1)$, $P_2 = (1, 2)$, $P_3 = (1, 1)$, $P_4 = (0, 2)$,
 - $P_5 = (2+i, 2+2i)$, $P_6 = (2+2i, 2+i)$, $P_7 = (i, 2+i)$,
 - $P_8 = (2i, 2+2i)$, $P_9 = (i, 1+2i)$, $P_{10} = (2i, 1+i)$,
 - $P_{11} = (2+i, 1+i)$, $P_{12} = (2+2i, 1+2i)$, ∞

- $\#J(\mathbb{F}_3) = 17$

- Let $D_1 = \text{div}(x, 1-y) = \text{div}(x, 1)$
Representing divisors [4/5]

- $1D_1 = \text{div}(x, 1) = P_1 - \infty$
- $2D_1 = \text{div}(x^2, 1) = P_1 + P_1 - 2\infty$
- $3D_1 = \text{div}(x^2+2x, 2) = P_2 + P_4 - 2\infty$
- $4D_1 = \text{div}(x+2, 2) = P_2 - \infty$
- $5D_1 = \text{div}(x^2+2x, x+1) = P_1 + P_2 - 2\infty$
- $6D_1 = \text{div}(x^2+2x+2, 2x+1) = P_5 + P_6 - 2\infty$
- $7D_1 = \text{div}(x^2+1, x+2) = P_7 + P_8 - 2\infty$
- $8D_1 = \text{div}(x^2+x+1, x+1) = P_2 + P_2 - 2\infty$
- $9D_1 = \text{div}(x^2+x+1, 2x+2) = P_3 + P_3 - 2\infty$
- $10D_1 = \text{div}(x^2+1, x+1) = P_9 + P_{10} - 2\infty$
Representing divisors [5/5]

- $11D_1 = \text{div}(x^2+2x+2, x+2) = P_{11} + P_{12} - 2\infty$
- $12D_1 = \text{div}(x^2+2x, 2x+2) = P_3 + P_4 - 2\infty$
- $13D_1 = \text{div}(x^2+2, 1) = P_3 - \infty$
- $14D_1 = \text{div}(x^2+2x, 1) = P_1 + P_3 - 2\infty$
- $15D_1 = \text{div}(x^2, 2) = P_4 + P_4 - 2\infty$
- $16D_1 = \text{div}(x, 2) = P_4 - \infty$
- $17D_1 = \text{zero} = \Phi$
Adding reduced divisors [1/7]

- Cantor’s algorithm: (composition)
 - Input: Reduced divisor $D_1 = \text{div}(a_1, b_1)$ and $D_2 = \text{div}(a_2, b_2)$ both defined over K.
 - Output: A semi-reduced divisor $D = \text{div}(a, b)$ defined over K such that $D \sim D_1 + D_2$.
 - Find polynomials $d_1, e_1, e_2 \in K[x]$ where $d_1 = \gcd(a_1, a_2) = e_1 a_1 + e_2 a_2$.
 - Find polynomials $d, c_1, c_2 \in K[x]$ where $d = \gcd(d_1, b_1 + b_2 + h) = c_1 d_1 + c_2 (b_1 + b_2 + h)$.
 - Let $s_1 = c_1 e_1$, $s_2 = c_2 e_2$, and $s_3 = c_2$, so that $d = s_1 a_1 + s_2 a_2 + s_3 (b_1 + b_2 + h)$.
 - Set $a = a_1 a_2 / d^2$, and
 \[
 b = \frac{s_1 a_1 b_2 + s_2 a_2 b_1 + s_3 (b_1 b_2 + f)}{d} \mod a
 \]
Adding reduced divisors [2/7]

- Cantor’s algorithm: (reduction)
 - Input: A semi-reduced divisor \(D = \text{div}(a, b) \) defined over \(K \).
 - Output: The (unique) reduced divisor \(D' = \text{div}(a', b') \) such that \(D' \sim D \).
 - Set \(a' = (f - bh - b^2)/a \)
 - \(b' = (-h - b) \mod a' \).
 - If \(\deg_u a > g \) then set \(a \leftarrow a', b \leftarrow b' \) and go to previous step.
 - Let \(c \) be the leading coefficient of \(a' \), and set \(a' \leftarrow c^{-1}a' \).
 - Output \((a', b') \).
Adding reduced divisors [3/7]

- In previous example, use Cantor’s algorithm to compute

\[4D_1 + 5D_1 = \operatorname{div}(x+2, 2) + \operatorname{div}(x^2+2x, x+1) = \operatorname{div}(x^2+x+1, 2x+2) = 9D_1 \]

- \[d_1 = \gcd(a_1, a_2) = e_1 a_1 + e_2 a_2 \]
 - \[d_1 = x+2, \quad e_1 = 1, \quad e_2 = 0 \]

- \[d = \gcd(d_1, b_1 + b_2 + h) = c_1 d_1 + c_2 (b_1 + b_2 + h) \]
 - \[d = 1, \quad c_1 = 2, \quad c_2 = 1 \]

- \[s_1 = c_1 e_1, \quad s_2 = c_1 e_2, \quad \text{and} \quad s_3 = c_2 \]
 - \[s_1 = 2, \quad s_2 = 0, \quad s_3 = 1 \]

- \[a = a_1 a_2 / d^2 \]
 - \[a = x^3 + x^2 + x \]

\[b = \frac{s_1 a_1 b_2 + s_2 a_2 b_1 + s_3 (b_1 b_2 + f)}{d} \mod a \]

\[= (x^5 + 2x^4 + 2x^2 + 2x + 1) \mod (x^3 + x^2 + x) \]

\[= x + 1 \]
Adding reduced divisors [4/7]

- \(a' = \frac{f - bh - b^2}{a}\)
 \[= \frac{x^5 + 2x^4 + 2x^2 + x + 1}{x^3 + x^2 + x}\]
 \[= x^2 + x + 1\]

- \(b' = (-h - b) \mod a'\)
 \[= (2x + 2) \mod (x^2 + x + 1)\]
 \[= 2x + 2\]
\(F_{25} = F_2[x]/(x^5+x^2+1) \)

<table>
<thead>
<tr>
<th>n</th>
<th>(\alpha^n)</th>
<th>n</th>
<th>(\alpha^n)</th>
<th>n</th>
<th>(\alpha^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>11</td>
<td>(\alpha^2 + \alpha + 1)</td>
<td>22</td>
<td>(\alpha^4 + \alpha^2 + 1)</td>
</tr>
<tr>
<td>1</td>
<td>(\alpha)</td>
<td>12</td>
<td>(\alpha^3 + \alpha^2 + \alpha)</td>
<td>23</td>
<td>(\alpha^3 + \alpha^2 + \alpha + 1)</td>
</tr>
<tr>
<td>2</td>
<td>(\alpha^2)</td>
<td>13</td>
<td>(\alpha^4 + \alpha^3 + \alpha^2)</td>
<td>24</td>
<td>(\alpha^4 + \alpha^3 + \alpha^2 + \alpha)</td>
</tr>
<tr>
<td>3</td>
<td>(\alpha^3)</td>
<td>14</td>
<td>(\alpha^4 + \alpha^3 + \alpha^2 + 1)</td>
<td>25</td>
<td>(\alpha^4 + \alpha^3 + 1)</td>
</tr>
<tr>
<td>4</td>
<td>(\alpha^4)</td>
<td>15</td>
<td>(\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1)</td>
<td>26</td>
<td>(\alpha^4 + \alpha^2 + \alpha + 1)</td>
</tr>
<tr>
<td>5</td>
<td>(\alpha^2 + 1)</td>
<td>16</td>
<td>(\alpha^4 + \alpha^3 + \alpha + 1)</td>
<td>27</td>
<td>(\alpha^3 + \alpha + 1)</td>
</tr>
<tr>
<td>6</td>
<td>(\alpha^3 + \alpha)</td>
<td>17</td>
<td>(\alpha^4 + \alpha + 1)</td>
<td>28</td>
<td>(\alpha^4 + \alpha^2 + \alpha)</td>
</tr>
<tr>
<td>7</td>
<td>(\alpha^4 + \alpha^2)</td>
<td>18</td>
<td>(\alpha + 1)</td>
<td>29</td>
<td>(\alpha^3 + 1)</td>
</tr>
<tr>
<td>8</td>
<td>(\alpha^3 + \alpha^2 + 1)</td>
<td>19</td>
<td>(\alpha^2 + \alpha)</td>
<td>30</td>
<td>(\alpha^4 + \alpha)</td>
</tr>
<tr>
<td>9</td>
<td>(\alpha^4 + \alpha^3 + \alpha)</td>
<td>20</td>
<td>(\alpha^3 + \alpha^2)</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>(\alpha^4 + 1)</td>
<td>21</td>
<td>(\alpha^4 + \alpha^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adding reduced divisors [5/7]

- Example 2:
 Consider the hyperelliptic curve C: $y^2 + (x^2 + x)y = x^5 + x^3 + 1$ of genus 2 over the finite field F_{2^5}. $P = (\alpha^{30}, 0)$ is an ordinary point in $C(F_{2^5})$ and the opposite of P is $\tilde{P} = (\alpha^{30}, \alpha^{16})$. $Q_1 = (0, 1)$ and $Q_2 = (1, 1)$ are special points in $C(F_{2^5})$.

- Let $D_1 = P + Q_1 - 2\infty = \text{div}(a_1, b_1)$ where $a_1 = x(x + \alpha^{30})$, $b_1 = \alpha x + 1$.

 $D_2 = \tilde{P} + Q_2 - 2\infty = \text{div}(a_2, b_2)$ where $a_2 = (x + 1)(x + \alpha^{30})$, $b_2 = \alpha^{23} x + \alpha^{12}$.

- $d_1 = \gcd(a_1, a_2) = x + \alpha^{30}$; $d_1 = a_1 + a_2$.

- $d_2 = \gcd(d_1, b_1 + b_2 + h) = x + \alpha^{30}$; $d = 1 \cdot d_1 + 0 \cdot (b_1 + b_2 + h)$
Adding reduced divisors [6/7]

- \(d = a_1 + a_2 + 0 \cdot (b_1 + b_2 + h) \).
- Set \(a = a_1 a_2 / d^2 = x(x+1) = x^2 + x \),

\[
\begin{align*}
 b &= \frac{1 \cdot a_1 b_2 + 1 \cdot a_2 b_1 + 0 \cdot (b_1 b_2 + f)}{d} \mod a \\
 &\equiv 1 \pmod{a}.
\end{align*}
\]

- Check:

\[
\begin{align*}
 \text{div}(a) &= 2Q_1 + 2Q_2 - 4\infty \\
 \text{div}(b - y) &= Q_1 + Q_2 + \sum_{i=1}^{3} P_i - 5\infty, \text{ where } P_i \neq Q_1, Q_2 \\
 \text{div}(a, b) &= Q_1 + Q_2 - 2\infty
\end{align*}
\]
Adding reduced divisors [7/7]

- Example:
Consider the semi-reduced divisor
\[D = (0,1) + (1,1) + (\alpha^5, \alpha^{15}) - 3\infty = \text{div}(a,b), \]
where

\[a(x) = x(x+1)(x+\alpha^5) = x^3 + \alpha^2 x^2 + \alpha^5 x \]
\[b(x) = \alpha^{17} x^2 + \alpha^{17} x + 1 \]

Reduction algorithm yields

\[a'(x) = x^2 + \alpha^{15} x + \alpha^{26} \]
\[b'(x) = \alpha^{23} x + \alpha^{21} \]

Hence \[D \sim \text{div}(a', b') = (\alpha^{28}, \alpha^7) + (\alpha^{29}, 0) - 2\infty \]