2.8 Endomorphisms

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University

ECC 2008
Definition of endomorphism

Define Endomorphism of E:

homomorphism $\alpha : \overline{E(K)} \rightarrow \overline{E(K)}$

α is given by rational functions

i.e.

1. $\alpha(x, y) = (R_1(x, y), R_2(x, y))$
with rational functions (quotients of polynomials) $R_1(x, y), R_2(x, y)$
with coefficients in \overline{K}, $\forall (x, y) \in \overline{E(K)}$

2. $\alpha(P_1 + P_2) = \alpha(P_1) + \alpha(P_2)$
Example

$E : y^2 = x^3 + Ax + B$, $\alpha(P) = 2P$

Then α is a homomorphism and $\alpha(x, y) = (R_1(x, y), R_2(x, y))$, where

$$R_1(x, y) = \left(\frac{3x^2 + A}{2y} \right)^2 - 2x$$

$$R_2(x, y) = \left(\frac{3x^2 + A}{2y} \right) \left(3x - \left(\frac{3x^2 + A}{2y} \right)^2 \right) - y$$

$\therefore \alpha$ is an endomorphism of E.

Transformation of rational functions

- Rewrite

\[R(x, y) = \frac{p_1(x) + p_2(x)y}{p_3(x) + p_4(x)y} \left(\times \frac{p_3(x) - p_4(x)y}{p_3(x) - p_4(x)y} \right) \]

\[\rightarrow R(x, y) = \frac{q_1(x) + q_2(x)y}{q_3(x)} \quad (2.10) \]

- Since \(\alpha(x, -y) = \alpha(-(x, y)) = -\alpha(x, y) \)

\[\rightarrow R_1(x, -y) = R_1(x, y) \text{ and } R_2(x, -y) = -R_2(x, y) \]

- If \(R_1 \) is written in the form (2.10), then \(q_2(x) = 0 \)

- If \(R_2 \) is written in the form (2.10), then \(q_1(x) = 0 \)
Transformation of rational functions (Continue)

- So we assume

\[\alpha(x, y) = (r_1(x), r_2(x)y) \text{ with rational } r_1(x), r_2(x) \]

- write \(r_1(x) = \frac{p(x)}{q(x)} \)

- If \(q(x) = 0 \) for some \((x, y)\), then assume \(\alpha(x, y) = \infty \)

- If \(q(x) \neq 0 \), then \(r_2(x) \) is defined. (Ex.2.14)
Definition

- Define degree of endomorphism α:

$$\deg(\alpha) = \max\{\deg(p(x)), \deg(q(x))\}$$

If $\alpha = 0 \rightarrow \deg(0) = 0$

- Define $\alpha \neq 0$ is a separable endomorphism:

If $r_1'(x) \neq 0 \iff$ at least one of $p'(x)$ and $q'(x)$ is not zero
Example 2.5

Example

Endomorphism $\alpha(P) = 2P$ (char. $\neq 2,3$):

$$R_1(x, y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$$

$$\rightarrow r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}$$

deg(α) = 4, and α is separable. ($\because q'(x) = 4(3x^2 + A)$ is not zero, including in char. 3, since if $A = 0$, then $x^3 + B$ has multiple roots!)
Example 2.6

In char. 2 (By Section 2.7), $\alpha(P) = 2P$ in $y^2 + xy = x^3 + a_2x^2 + a_6$

$$\alpha(x, y) = (r_1(x), R_2(x, y))$$

$$r_1(x) = \frac{x^4 + a_6}{x^2} \quad \therefore \deg(\alpha) = 4$$

$p'(x) = 4x^3 = 0, \quad q'(x) = 2x = 0 \quad \therefore \alpha \text{ is not separable}$

In general, $E/K, \ char.(K) = p$, endomorphism $\alpha(Q) = pQ$

$\rightarrow \deg(\alpha) = p^2, \alpha \text{ is not separable.}$

(See Proposition 2.27)
Frobenius map

Define Frobenius map:

\[E/F_q : \phi_q(x, y) = (x^q, y^q) \]

Lemma 2.19:
Let \(E \) be defined over \(\mathbb{F}_q \). Then \(\phi_q \) is an endomorphism of \(E \) of degree \(q \), and \(\phi_q \) is not separable
Proposition 2.20

Let $\alpha \neq 0$ be a separable endomorphism of an elliptic curve E. Then

$$\deg \alpha = \#Ker(\alpha),$$

where $Ker(\alpha)$ is the kernel of the homomorphism $\alpha : E(\overline{K}) \to E(\overline{K})$. If $\alpha \neq 0$ is not separable, then

$$\deg \alpha > \#Ker(\alpha).$$
Proof

Write $\alpha(x, y) = (r_1(x), yr_2(x))$ with $r_1(x) = p(x)/q(x)$

If α is separable, then $r_1' \neq 0$ so $p'q - pq'$ is not the zero polynomial.

Let S be the set of $x \in \overline{K}$ such that $(pq' - p'q)(x)q(x) = 0$

Let $(a, b) \in E(\overline{K})$, satisfying

1. $a \neq 0$, $b \neq 0$, $(a, b) \neq \infty$
2. $\text{deg}(p(x) - aq(x)) = \max\{\text{deg}(p), \text{deg}(q)\} = \text{deg}(\alpha)$
3. $a \notin r_1(S)$
4. $(a, b) \in \alpha(E(\overline{K}))$

$\therefore pq' - p'q$ is not zero polynomial, $\therefore S$ is a finite set.
Proof - continue

Given \((a, b) \in E(\overline{K})\)

We claim exactly \(\deg(\alpha)\) points \((x_1, y_1) \in E(\overline{K})\) such that
\[
\alpha(x_1, y_1) = (a, b).
\]

For such a point,
\[
\frac{p(x_1)}{q(x_1)} = a, \quad y_1 r_2(x_1) = b
\]

Since \((a, b) \neq \infty\), \(\therefore q(x_1) \neq 0, r_2(x_1)\) is defined.

\[
\therefore y_1 = \frac{b}{r_2(x_1)}\]

so we only need to count values of \(x_1\)

By assumption (2), \(p(x) - aq(x) = 0\) has \(\deg(\alpha)\) roots, counting multiplicities.
Proof - continue

* Suppose x_0 is a multiple root. Then

\[
p(x_0) - aq(x_0) = 0 \quad \text{and} \quad p'(x_0) - aq'(x_0) = 0
\]

Multiplying \(p = aq \) and \(aq' = p' \) yields

\[
ap(x_0)q'(x_0) = ap'(x_0)q(x_0)
\]

\[\therefore a \neq 0 \quad \rightarrow \quad x_0 \text{ is a root of } pq' - p'q\]

So \(x_0 \in S \).

Therefore, \(a = r_1(x_0) \in r_1(S) \), contrary to assumption (3).

\[\therefore p - aq \text{ has no multiple roots, and therefore has } \deg(\alpha) \text{ distinct roots}\]

\[\therefore \text{there are exactly } \deg(\alpha) \text{ points with } \alpha(x_1, y_1) = (a, b), \text{ the kernel of } \alpha \text{ has } \deg(\alpha) \text{ elements.}\]

* If \(\alpha \) is not separable, trivial now.
Theorem 2.21

Let E be an elliptic curve defined over a field K. Let $\alpha \neq 0$ be an endomorphism of E.

Then $\alpha : E(K) \rightarrow E(K)$ is surjective.

Proof:

Let $(a, b) \in E(K)$.

Since $\alpha(\infty) = \infty$, we may assume that $(a, b) \neq \infty$

Let $r_1(x) = p(x)/q(x)$

Consider two cases:

1. $p(x) - aq(x)$ is not constant polynomial

2. $p(x) - aq(x)$ is constant polynomial
Proof - continue

- If \(p(x) - aq(x) \) is not constant polynomial, then it has a root \(x_0 \).
 Choose \(y_0 \in \overline{K} \) to be either square root of \(x_0^3 + Ax_0 + B \).
 Then \(\alpha(x_0, y_0) \) is defined and equals \((a, b') \) for some \(b' \).
 Since \(b'^2 = a^3 + Aa + B = b^2 \) → \(b' = \pm b \)
 If \(b' = b \), we’re done.
 If \(b' = -b \), then \(\alpha(x_0, -y_0) = (a, -b') = (a, b) \)

- If \(p(x) - aq(x) \) is constant polynomial.
 → see Textbook p: 51
Lemma 2.23

Let E be the elliptic curve $y^2 = x^3 + Ax + B$. Fix a point (u, v) on E. Write

$$(x, y) + (u, v) = (f(x, y), g(x, y)),$$

where $f(x, y)$ and $g(x, y)$ are rational functions of x, y (the coefficients depend on (u, v)). Then

$$\frac{d}{dx} f(x, y) \frac{1}{g(x, y)} = \frac{1}{y}.$$

NB. $\frac{d}{dx} f(x, y) = f_x(x, y) + f_y(x, y)y'$
Lemma 2.25

Let $\alpha_1, \alpha_2, \alpha_3$ be nonzero endomorphisms of an elliptic curve E with $\alpha_1 + \alpha_2 = \alpha_3$. Write

$$\alpha_j(x, y) = (R_{\alpha_j}(x), yS_{\alpha_j}(x)).$$

Suppose there are constants $c_{\alpha_1}, c_{\alpha_2}$ such that

$$\frac{R'_{\alpha_1}(x)}{S_{\alpha_1}(x)} = c_{\alpha_1}, \quad \frac{R'_{\alpha_2}(x)}{S_{\alpha_2}(x)} = c_{\alpha_2}.$$

Then

$$\frac{R'_{\alpha_3}(x)}{S_{\alpha_3}(x)} = c_{\alpha_1} + c_{\alpha_2}.$$
Proposition 2.27

Let E be an elliptic curve defined over a field K, and let n be a nonzero integer. Suppose that multiplication by n on E is given by

$$n(x, y) = (R_n(x), yS_n(x))$$

for all $(x, y) \in E(K)$, where R_n and S_n are rational functions. Then

$$\frac{R'_n(x)}{S_n(x)} = n.$$

Therefore, multiplication by n is separable if and only if n is not a multiple of $\text{char}(K)$.
Proposition 2.28

Let E be an elliptic curve defined over \mathbb{F}_q, where q is a power of the prime p.
Let r and s be integers, not both 0. The endomorphism $r\phi_q + s$ is separable if and only if $p \nmid s$.

Proof:

- Write the multiplication by r endomorphism as

 \[r(x, y) = (R_r(x), yS_r(x)). \]

 Then

 \[\left(R_{r\phi_q}(x), yS_{r\phi_q}(x) \right) = (r\phi_q)(x, y) = (R^q_r(x), y^qS^q_r(x)) \]

 \[= \left(R^q_r(x), y(x^3 + Ax + B)^{(q-1)/2}S^q_r(x) \right). \]
Proof - continue

Therefore,

\[
c_{r\phi q} = R_{r\phi q}' / S_{r\phi q} = q R_r^{q-1} R_r' / S_{r\phi q} = 0.
\]

Also, \(c_s = R_r' / S_s = s \) by Proposition 2.27. By Lemma 2.25,

\[
R_{r\phi q+s}' / S_{r\phi q+s} = c_{r\phi q+s} = c_{r\phi q} + c_s = 0 + s = s.
\]

Therefore, \(R_{r\phi q+s}' \neq 0 \) if and only if \(p \nmid s \).