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ABSTRACT

In this paper, we propose several high-speed area-efficient 

recursive discrete Fourier transform (DFT)/inverse DFT 

(IDFT) designs adopting the module-sharing and 

register-splitting schemes. The proposed core architecture 

achieves one multiplier reduction as well as less critical 

period and a saving of nearly half multiplications compared 

with the second-order and first-order recursive DFT 

structures, respectively. So as to reduce the number of 

computation cycles, based on the new core design, we develop 

the area-efficient parallel and folded recursive DFT/IDFT 

architectures. Moreover, due to the advantages of regular and 

modular structure, the resulting high-speed area-efficient 

recursive DFT/IDFT architectures are amenable to 

application-specific integrated circuit (ASIC) design. 

1. Introduction 

    The discrete Fourier transform (DFT) has been widely 

applied in the analysis and implementation of discrete-time signal 

processing [1] and communication systems such as dual tone 

multi-frequency (DTMF) application [2-3]. In many applications, 

the complex sequences in time-domain are expected to be 

frequency-domain signals via the DFT computation. Without loss 

of generality, the input data is assumed as complex-valued data. 

From existing research, there are possible four categories for the 

structures of DFT computations: 1) recursive-algorithm based 

architecture [1-6], 2) butterfly-based architecture [1, 7], 3) ROM 

operation based structure [8], and 4) multiplier-accumulator 

based structure. It is well known that the DFT architectures based 

on the recursive algorithm are more area-efficient than those 

realized by other approaches. Until now, the existing recursive 

algorithms for the orthogonal transform in the scope of 

DFT/DCT/DST (discrete Fourier/cosine/sine transform) involve 

the following: Goertzel algorithm [1-6, 9], C-S’s algorithm [10], 

Chebyshev polynomials [11], and Clenshaw’s recurrence formula 

(CRF) [12-13]. In [10-12], recursive expressions for the 

computation of the DCT-II that are suitable for VLSI 

implementation are presented. The recursive DCT-II architecture 

[11] is based on Chebyshev polynomials of the third kind while 

those in [12] are based on CRF. Recently, Kidambi [13] furnished 

recursive DCT-IV and DST-IV architectures, where this approach 

can be possible to develop recursive DFT architecture. Note that 

in [10-13], recursive algorithms are used to design recursive 

DCT/DST architectures rather than recursive DFT architecture. 

In [1, 6], the original second-order recursive DFT architecture 

derived from Goertzel algorithm has one redundant multiplier 

and thus we can reuse the same multiplier to save the redundant 

one. This area-reduction strategy is referred to as the 

module-sharing scheme. Thus, the modified recursive DFT 

architecture has lower area than the preceding one [1, 6]. Next, 

we apply register-splitting scheme [14] to speedup the 

area-efficient architecture without affecting the system transfer 

function.  Therefore, the proposed architecture possesses the 

following features: high speed, reduction of one multiplier 

compared with the second-order recursive DFT structure, and a 

saving of nearly half multiplications for each DFT output 

compared with the first-order recursive DFT structure. Regarding 

the new area-efficient recursive DFT/IDFT architecture as a core, 

we can develop parallel- and folded-type architectures to achieve 

less computation cycles for real-time media applications. The 

paper is organized as follows. A review of the first- and 

second-order recursive DFT structures is given in Section 2. In 

Section 3, we propose three new recursive DFT/IDFT 

architectures by module-sharing and register-splitting schemes: 

core-, parallel-, and folded-type architectures. In Section 4, 

comparison results are tabulated in terms of the critical period, 

the number of real multipliers, the amount of real multiplications 

as well as real additions for each DFT/IDFT output sequence, and 

the number of computation cycles for N-point DFT/IDFT. At last, 

the concise statements conclude this paper. 

2. A Review of First- and Second-Order Recursive 

DFT Structures 

    Given input sequence and DFT output sequence denoted as 

][nx  and ][KX , respectively, the N -point DFT can be defined 

as 
1

0

][][

N

n

kn
NWnxkX , (1) 

where Nj
N eW /2 . The Goertzel algorithm [4] making use 

of the periodicity of the sequence kn
NW  can be used to reduce 

computation. For convenience of deriving a new architecture, we 

begin a review of the recursive DFT expression based on 

Goertzel algorithm by noting that     
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Because of Eq. (2), we may multiply the right side of Eq. (1) by 
kN

NW  without affecting the equation. Thus, 
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In order to simplify the final expression, let us define the 

sequence

r

rnk
Nk rnuWrxny ][][)( )(

. (4) 

From Eqs. (3) and (4) and the fact that 0][nx  for 0n  and 

Nn , it follows that  

Nnk nykX |][][ . (5) 

Eq. (4) can be interpreted as a discrete convolution of the 

finite-duration sequence ][nx , 10 Nn , with the 

sequence ][nuW kn
N . As a consequence, ][nyk  can be 
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regarded as the response of a system with impulse response 

][nuW kn
N  to a finite-length input ][nx . In particular, ][kX  is 

the value of the output when Nn . Taking the z -transform of 

Eq. (4), we can obtain the first-order transfer function as 

11

1
)(

zW
zH

k
N

k . (6) 

Eq. (6) can be mapped into the first-order recursive DFT 

structure as shown in Fig. 1(a), where initial rest conditions are 

assumed and the vertical dash-line denotes the down-sample 

operation with N  for each crossing signal path. Note that the 

dash-line as shown in Fig. 1(a) can be possibly implemented by 

multiplexer-type or register-type down-sampling realization. 

Here, we adopt the multiplexer-type down-sampling realization 

as shown in Fig. 1(b) due to the advantages of less area and exact 

mapping from the equation to the architecture. In Fig. 1(b), if 

1sel , the lower-side signal is passed to the output; otherwise, 

the upper-side signal is selected as the output signal for the 

multiplexer. In this correspondence, since the input ][nx  and 

the coefficient k
NW  are in complex domain, the computation of 

each new value of ][nyk  through the first-order recursive DFT 

structure as shown in Fig. 1(a) requires four real multiplications 

and four real additions. All the intervening values ]1[ky ,

]2[ky ,…, ]1[Nyk  must be computed in order to compute 

][][ kXNyk , so the use of the first-order recursive DFT 

structure as a computational algorithm requires N4  real 

multiplications and N4  real additions to compute ][kX  for a 

particular value of k . However, a large number of 

multiplications are required for the first-order recursive DFT 

architecture, even if the one avoids the computation or storage of 

the coefficients kn
NW  in Eq. (1) at each n th time index. 

][nx ][kX

k

NW

1z
X
U
M

Output

Counter N

N2log

Input
sel

  (a)                      (b) 

Fig. 1. (a) Block diagram of the first-order recursive DFT 

structure and (b) a multiplexer-type dash-line implementation 

with down-sampling value of N .

    It is possible to retain this simplification while reducing the 

number of multiplications by a factor of 2. To see how this may 

be treated, the transfer function of the first-order recursive DFT 

structure in Fig 1(a) can be noted. Multiplying both the 

numerator and the denominator of )(zH k  by the factor 

)1( 1zW k
N , we obtain 
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Eq. (7) can be mapped into the second-order recursive DFT 

structure as shown in Fig. 2. 
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2

cos(2
N

k
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1z

1z

][kX

Fig. 2. Block diagram of the second-order recursive DFT 

structure. 

In Fig. 2, only two real multiplications per sample are required to 

implement the poles of this system as shown in Fig. 2. Note that, 

in the denominator of Eq. (7), the coefficients are real and the 

factor –1 need not be counted as a multiplication. It is worthy of 

emphasizing that the complex multiplication by k
NW  required 

to implement the zero of the transfer function need not be 

performed at every iteration of the difference equation, but only 

after the N th iteration. Thus, the total computation is N2  real 

multiplications and N4  real additions for the poles plus four 

real multiplications and four real additions for the zero. The 

coefficients kn
NW  are again computed implicitly in the iteration 

of the recursion formula implied in Fig. 2. The second-order 

recursive DFT structure can decrease the number of 

multiplications by Goertzel algorithm; however, the amount of 

multipliers and the value of the critical period are sacrificed. 

Hence, the structures in Figs. 1(a) and 2 are not efficient.  

3. New Recursive DFT/IDFT Architectures 

Keeping in mind that we are encouraged to design an 

efficient architecture that satisfies the features of the lower 

critical period (i.e., high speed), less number of multipliers (i.e., 

low area), and less number of multiplications. Substituting the 

definition Nj
N eW /2  into Eq. (7), Eq. (7) can be recast as  

21

11

)/2cos(21

)/2sin()/2cos(1
)(

zzNk

zNkjzNk
zH k . (8) 

From Eq. (8), we find that there are two the same multiplicands 

)/2cos( Nk of the multiplier appeared in the first-order of the 

numerator and denominator. Let the feedforward and feedback 

signal paths of the first-order go through the same multiplier and 

then the feedback signal path is adjusted by shift register to 

obtain the two times result. Based on the above description, we 

can easily modify the second-order structure as a new 

area-efficient architecture as shown in Fig. 3, where 
HS

1  is a 

hardwired shifter with one-bit left shift. The above reducing area 

method is referred to as the module-sharing scheme. 

    For the speed issue, we adopt the register-splitting scheme 

(i.e., one kind of retiming schemes), to reduce the critical period 

and this scheme has been successfully used in 2-D IIR/FIR 

digital filter [14]. Herein, we define two useful notations 0 and 1, 

where 0 and 1 indicate that the delay elements as shown in Fig. 3 

are at top-to-down and bottom-to-up signal paths, respectively. 

Thus, we can easily use the digital number sequence to represent 
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different register-splitting structures. For example, the proposed 

core design in Fig. 3 can be represented as 00. In this case, there 

are four combinations as listed in Table 1, for register-splitting 

structures of Fig. 3. With minimum critical period in mind, we 

select the 10 register-splitting structure for our design. Note that 

10 and 11 as listed in Table 1 result in the same DFT design as 

depicted in Fig. 4. The new DFT architecture owns higher speed 

and smaller area than the second-order DFT structures. As to the 

number of operations of the high-speed area-efficient recursive 

DFT architecture in Fig. 4, only two real multiplications per 

sample and two real multiplications by )/2sin( Nk  are 

required to implement the poles and the imaginary part of the 

DFT output, respectively. Thus, the total computation is N2

real multiplications and N4  real additions for the poles plus 

two real multiplications and four real additions for the zero. 
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cos(
N

k
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1z

1z

HS

1

)
2
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N

k
j
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0

0

Fig. 3. Block diagram of the proposed area-efficient recursive 

DFT architecture. 

Table 1: Combinations of Register-Splitting Structures 

Combinations 00 01 10 11 

Critical Period am TT 4 am TT 4 am TT 2 am TT 2
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Fig. 4. Block diagram of the proposed high-speed area-efficient 

recursive DFT architecture. 

   In similar behavior, the resulting transfer function of the 

recursive IDFT can be obtained as 

21

11

)/2cos(21

)/2sin()/2cos(1
)(

zzNn

zNnjzNn
zH n . (9) 

Via the module-sharing and register-splitting schemes, Eq. (9) 

can be realized as a new recursive IDFT structure.  

   In order to reduce the number of computation cycles for 

N-point DFT/IDFT, utilizing this powerful core design as shown 

in Fig. 4 as a processing element (PE), we can construct the 

parallel recursive DFT structure as shown in Fig. 5. From 

comparison results as listed in Table 2, it can be seen that the 

parallel recursive structure significantly reduces the number of 

computation cycles from 2N  to N2 . Importantly, the parallel 

recursive structure is more area-efficient than that based on the 

conventional first- and second-order DFT designs. For sake of 

area saving, the parallel recursive structure can be improved as a 

folded recursive DFT architecture in Fig. 6 with sacrificing the 

number of N computation cycles. 
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Fig. 5. Block diagram of the parallel high-speed area-efficient 

recursive DFT structure.
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Fig. 6. Block diagram of the folded high-speed area-efficient 

recursive DFT structure. 

4. Comparison Results 

   In this section, we give a comprehensive comparison results 

as listed in Table 2 in terms of the critical period, the number of 

real multipliers, the total real multiplications as well as real 

additions for each DFT/IDFT output, and the number of 

computation cycles. Let mT  and aT  denote the operation time 

required for one real multiplication and one real addition, 

respectively. Note that the operation time of the complex 
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multiplication requires am TT  and the operation time of the 

multiplexer in Fig. 1(b) compared to mT  and aT  can be 

ignored here. Our proposed work 1 (i.e., core-type design) has 

the same highest speed and lowest number of the multipliers as 

the first-order recursive DFT/IDFT architecture due to applying 

register-splitting and module-sharing schemes, respectively. 

Although the first-order recursive DFT/IDFT structure owns the 

above advantages as listed in the first- and second rows of Table 

2, the one cannot overcome the large operations for each 

DFT/IDFT output. That is, the one needs large power 

consumption. Our proposed work 1 and the second-order 

DFT/IDFT architecture based on Goertzel algorithm can save 

nearly half multiplications for each DFT/IDFT output compared 

with the first-order recursive DFT/IDFT structure. Furthermore, 

based on the proposed work 1, we can construct parallel and 

folded recursive DFT/IDFT architectures. These two 

architectures can significantly reduce the number of computation 

cycles for N -point DFT/IDFT from 2N  to N2  and N3 , 

respectively. Thus, more real-time operation can be achieved. 

Note that, although these two architectures extra require 

multipliers, these two ones are still area-efficient compared with 

those based on conventional core designs. Therefore, in Table 2, 

it reveals that our proposed architectures have characteristics of 

high speed, area-efficient, and fewer computing operations. 

5. Conclusion 

We have devised three new recursive DFT/IDFT 

architectures based on Goertzel algorithm by the hybrid of 

module-sharing and register-splitting schemes. The 

module-sharing scheme can highly reduce the number of 

multipliers. On the other hand, register-splitting scheme results in 

a high-speed architecture. Based on Goertzel algorithm, we retain 

the characteristic of low operations for DFT/IDFT designs.  
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Table 2: Comparison Results among the Recursive DFT/IDFT Architectures 

Parameters First-Order 

DFT/IDFT 

Second-Order

DFT/IDFT  

Proposed Work 1 

(Core Type) 

Proposed Work 2 

(Parallel Type) 

Proposed Work 3 

(Folded Type) 

Critical Period am TT 2 am TT 3 am TT 2 am TT 2 am TT 2

# of Real Multipliers 4 5 4 N4 N2

# of Real Multiplications for 

Each Output ][KX  or ][nx
N4  42N  22N  22N  22N

# of Real Additions for Each 

Output ][KX  or ][nx
N4  44N  44N  44N  44N

# of Computation Cycles for 

N-Point DFT/IDFT 

2N 2N 2N N2 N3
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