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Abstract—In this paper, we propose one grouped-iterative 

framework to generate a family of the MIMO detection 

algorithms. The presented framework not only includes the 

conventional iterative, grouped, and Chase detection algorithms, 

but also derives a new low-complexity MIMO detection 

algorithm. The proposed detection can adjust some parameters 

to achieve a range of trade-offs between performance and 

complexity. In (4,4) system with uncoded 16-QAM inputs, one 

instance of the proposed detection algorithm not only 

substantially reduces the multiplication complexity by 26.3% but 

also outperforms the BODF algorithm about 5dB. Another 

instance of the proposed algorithm can save multiplication 

complexity by 34% at the penalty of 1 dB loss compared with the 
B-Chase detector. 

I. INTRODUCTION 

Multiple-Input-Multiple-Output (MIMO) technology can 

significantly improve data transmission rate in the limited 

bandwidth wireless communications without increasing 

transmitted power. Previous researchers have shown that the 

channel capacity increases with the number of antennas [1], 

[2]. Because of the above benefit, the MIMO technique has 

been considered in modern high-speed wireless 

communication standard including wireless LAN and mobile 

wireless MAN. For MIMO communication systems, the 

detection scheme is more complex than that in Single-Input-

Single-Output (SISO) communication systems. Since the 

MIMO communications transmit information at very high data 

rate, reasonable computational complexity of the detection 

algorithm using in the receiver is essentially considered. In 

terms of bit-error rate (BER) performance, the maximum 

likelihood (ML) detection scheme is an optimum solution for 

the MIMO detection. However, it is manifest that the detection 

complexity would be raised rapidly as the number of antennas 

and the constellation size increases. Therefore, the 

computational complexity of the ML scheme is too high to be 

applied to real-time communications. Many researchers 

currently concentrate on developing low-complexity detection 

algorithms [3], [4] to reduce the computational complexity and 

save power for larger number of antenna systems. The Bell 

Laboratories layered space-time (BLAST) wireless 

communication system [1] uses multi-element antenna arrays 

at both the transmitter and receiver to achieve high spectral 

efficiency. This technology is referred to as the diagonal 

BLAST (DBLAST). The DBLAST theoretically approaches 

the Shannon capacity for multiple transmitters and receivers, 

but the DBLAST still possesses high computational 

complexity. A simplified architecture known as vertical 

BLAST (VBLAST) and a detection algorithm called BLAST-

ordered decision feedback (BODF) has been proposed in [3]; 

however, the BER performance will be largely degraded. Until 

now, some research uses grouped interference suppression 

(GIS) [5] technique to divide system into two lower 

dimensional sub-systems. The most important sub-system 

applies the ML detection and another employs a suboptimal 

algorithm with lower complexity. Although the previously 

published method using the ML and BODF detection schemes 

can improve performance improvement, the high complexity 

is still remained. Thus, we are motivated to devise a MIMO 

detection algorithm that possesses the features of the low 

complexity and satisfactory performance. 

This paper is organized as follows: Brief review of MIMO 
detection algorithms is described in Section II. In Section III, 
one generalized grouped-iterative framework is presented, and 
shows how to generate existing algorithms through this 
framework. In Section IV, we propose a new detection 
algorithm that belongs to this framework. The complexity 
analysis and simulation results are presented in Section IV. 
Last, the conclusion is given. 

II. BRIEF REVIEW OF MIMO DETECTION ALGORITHMS

A MIMO system with N transmit antennas and M receive 

antennas is considered in this paper. The discrete-time 

received signal r can be written as 

                                         nHsr += ,              (1) 

where s is the N×1 vector of the simultaneous transmitted 

symbols that selecting from constellation C, and we denotes 

|C| is the constellation size. H is the M×N equivalent channel 

transfer matrix, n is the M×1 complex white Gaussian noise 

vector with zero mean and variance of 2

n
σ . In this paper, the 

elements in H are assumed to be independent identically 

distributed (IID) complex Gaussian random variable with zero 

mean. It is assumed that the receiver knows channel matrix H

perfectly. This is known that the ML detector is an optimum 

solution for the receiver in which the scheme detects all sub-

stream symbols jointly by choosing the symbol vector, which 

maximizes likelihood function. However, the higher 

computational complexity of the ML scheme blocks the VLSI 

implementation. Several low-complexity detection algorithms 
[3-10] have been widely studied. Herein, we briefly review the 

complexity-oriented algorithms as follows. 
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A. Grouped Detection 

The group detection algorithm [5] consists of the ordering, 
GIS, ML algorithm for the first group symbols, interference 
canceling (IC), and BODF algorithm for the second group 
symbols. The GIS plays the role of dividing symbols into two 
groups and suppressing the performance influence with the low 
SNR signals. After ordering symbols, the ML detection 
algorithm is employed at the first group to detect higher SNR 
signals. Because of the property of the ML algorithm, we can 
detect symbols at early stage and guarantee the performance 
without error propagation. Although the remaining symbols 
detected at the second group disturbed by high noise power can 
be performed in a suboptimal way like linear filtering, the 
difference to the ML approach is very small in this case. Thus, 
the suboptimal algorithms can be resulted such as the BODF 
[3], [4] detection algorithms. 

B. Iterative Detection 

The iterative detection algorithm proposed in [6], [7] 
iterates the BODF algorithm recursively. At the second round 
of the BODF algorithm, it reverses the detection order of the 
BODF algorithm at first around to retrieve the high diversity 
gain. Enhancing diversity for all symbols can decrease error 
propagation. 

C. Chase Detection 

The Chase detection [9] based on the chase algorithm 
determines which symbol detected first, list length, and sub-
detector algorithm for MIMO detection application. Many 
detection algorithms including the ML, BODF, and B-chase 
can be derived from the chase algorithm by adjusting the above 
three parameters. The B-Chase detector provides a tradeoff 
between the complexity and performance by choosing the list 
length. When the list length equals the constellation size, the 
performance of the B-Chase detection is close to that of the 
ML detection. Although the sphere decoder (SD) [10] has 
better performance than that of the above chase detectors, the 
SD needs larger and uncertain computational complexity. 

III. A GENERALIZED GROUPED-ITERATIVE MIMO

DETECTION FRAMEWORK

In this section, we propose a grouped-iterative framework 
as shown in Fig. 1 such that several previously reported 
detection algorithms can be fit into. As we know that the 
grouped detection outperforms iterative detection in high SNR 
environment; on the other hand, the grouped detection has 
weaker performance than that of the iterative detection in low 
SNR environment. We are motivated to combine both 
algorithms to attain better performance. Herein, the proposed 
framework not only includes the existing conventional grouped 
and iterative detection algorithms, but also derives a new 
scheme. In order to improve performance, we list more 
candidates to look for more possible solutions. The proposed 
framework is introduced as follows. 

Step1: Order the sequence of detecting symbols, and divide 

all symbols into two groups. Group I has K symbols 

{
k

nnn
sss ,,,

21

} of the highest order, and the residual (N-

K) symbols {
Nkk

nnn
sss ,,,

21 ++
} are allocated into group II, 

where {n1, n2, …, nN} denotes the detection order index. 

Step2: Make a list of partial candidates {
III

sss ′′′ ,,,
21

} by 

ordering in terms of minimum mean squared error, 

where 
i

I
s′ consists of K symbols {

k
ninini

sss
,,,

,,,
21

′′′ }. 

Step3: Cancel the interference of r from the K symbols 
i

I
s′

to derive
i

r′ , and determine the remaining (N-K)

symbols T

nininiII
Nkki

ssss ],,,[
,,,

21 ++
= , where T

x denotes the 

transpose of x .

Step4: Cancel the interference of r from the (N-K)

symbols
i

II
s  to derive

i
r ′′ , and determine the K

symbols T

nininiI
ssss

kki

],,,[
11

,,, −
= .

Step5: Determine whether the iterative operation is needed 

by detection algorithm. If iterating is selected, continue 

to update values of parameters. The equation of decision 

is presented in Table I if the detection needed. The 

iterative decision feedback (IDF) consists of steps 3~5 

as shown in Fig. 1. 

Step6: Choose the best hard decision s~  among the 

candidates {
nnn

sss ~,,~,~
21

}, and reorder s~  into s.

To configure different grouped-iterative detectors, several 

parameters will be used and defined in the following.  

K: The number of symbols in group I. (1 K N). 

Sub-algorithm1, 2, and 3: The detection algorithm 

used in step 2, 3, and 4, respectively. 

: The list length. (1 |C|K)

MI: The maximum number of iteration. (0 MI)

Table I summarizes how the BODF, grouped, iterative, and B-
Chase detector are specified in the group-iterative detection 
framework using these parameters. Identity means that the 
symbols are bypassed at this stage and fed to the next step. The 
new proposed detector will be illustrated in the next section. 

IV. A NEW GROUPED-ITERATIVE DETECTOR

In this section, we explore the above framework by 
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Fig. 1. Flowchart of grouped-iterative framework.
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TABLE I

CASES OF GROUPED-ITERATIVE FRAMEWORK FOR MIMO DETECTION

Detector The number of 

symbols in 

group I : K

Algorithm

used in Step 2 

(Sub-Algo.1) 

List length Algorithm

used in (Step 3, Step 4 ) 

(Sub-Algo.2, Sub-Algo.3) 

Iteration 

Determination in Step 

5 (MaxIteNum=MI)

BODF [3] 1 K N BODF 1 (BODF, Identity) No

Grouped [5] 1 K N ML (ZF-GIS) 1 (BODF, Identity) No

Iterative [7] K=(N-1) BODF 1 (BODF, BODF) Yes(1 MI)
1

∗
B-Chase [9] K=1 BODF 1 |C| (BODF, Identity) No

Proposed Work 1 K N B-Chase (ZF-GIS) 1 |C| (SQRDF, SQRDF) Yes(1 MI)
2

∗  or No 

1
∗ : If (

11
,, nini

ss ==′ or IteNum(IN) = =MI), end; else set
11

,, nini
ss =′ and iterate. 

2
∗ : If ( },,,{},,,{

,,,,,,
2121 kk

nininininini
ssssss ==′′′ or IN = =MI), end; else set },,,{},,,{

,,,,,,
2121 kk

nininininini
ssssss =′′′  and iterate. 

configuring the parameters and then propose a new detection 

algorithm. After investigating the grouped-iterative framework, 

the configuration parameters including K, sub-algorithm1, -

algorithm2, -algorithm3, , MI can be further changed to 

optimize the complexity and performance. In the proposed 

work, the ML algorithm used in step 2 at grouped detection is 

replaced by the B-Chase detection, where the performance of 

the B-Chase detection is close to that of the ML algorithm 

with the low computational complexity. For regularity and low 

computational complexity, we use the sorted QR decision 

feedback algorithm (SQRDF) [8] in step 3, and 4 instead of 

the zero-forcing BODF algorithm used in grouped detection. 

Finally, we give a wide range of parameters K, , and MI to 

be changed for complexity and performance trade-off. Hence, 

we can largely reduce complexity through the presented 

configurations as shown in Table 1. The detailed operations at 

each design step of the proposed MIMO detection algorithm 

are described as follows. 

Step 1: In this step, we sort the detection order firstly by 
values of signal to noise ratio (SNR) in order to early detect 
higher SNR signals. 

2

ii
p h=    for i = 1, 2,…, N,     (2) 

where 
i

h is the i-th column of H. According to the value of 

each
i

p , we can sort the values and obtain (3) 

N
nnn

ppp ≥≥≥
21

, (3) 

where {n1, n2, …, nN} denotes the detection order index. 

We reorder all symbols s and the channel matrix H

into },,,{~
21 N

nnn
ssss = and ][

~
21 N

nnn
hhhH = . The system will 

be changed to 

nHr ~~~~ += s . (4) 

According to the number of K, s~ can be divided into two 

groups T

nnnI
k

ssss ],,,[
21

= and T

nnnII
Nkk

ssss ],,,[
21 ++

= .

Step 2: In order to reduce complexity, we divide original 
system into two lower dimensional sub-systems through 
applying the GIS technique. And we modify the computation 

of the ZF-GIS [5] to possess lower complexity. Without loss of 
the generality, we illustrate the computation in (4,4) MIMO 
system and set K=N/2 at this step. In this case, the ordered 

channel matrix H
~

can be written as 

                    =

44434241

34333231

24232221

14131211

~

hhhh

hhhh

hhhh

hhhh

H    

[ ]HHhhhh ′′′== ][
4321

nnnn
, (5) 

where ][
21 k

nnn
hhhH =′ and ][

21 Nkk
nnn

hhhH
++

=′′ . In the 

proposed detection algorithm, we employ the matrix Hbr to 

obtain a left null matrix L of H ′′ . The left null matrix L and 

the matrix Hbr on the bottom right corner of H
~

can be 
respectively defined in (6) and (7). 

=
DC

BA

10

01
L , (6) 

and 

=
4443

3433

hh

hh
br

H , (7) 

where A, B, C, D can be calculated via the following matrix 
computation. 

−
−

= −

14

131)(
h

h

B

A
T

br
H ,  (8a) 

−
−

= −

24

231)(
h

h

D

C
T

br
H . (8b) 

By this computation, we can quickly retrieve the left null 
matrix L and then apply Gram-Schmidt orthogonalization to L.
Then L is multiplied on both sides of (4). We can derive the 
following equation as 

nHr ˆˆˆ +′=
I

s , (9) 

where nLn ~ˆ = and HLH ′=ˆ with dimension of KK × . After 
the operation of the ZF-GIS, we use the B-Chase detector to 
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detect the sub-system in (9) with choosing best candidates 
which have minimum mean squared error. Then we can derive 

an ordered list of partial candidates {
III

sss ′′′ ,,,
21

}. 

Steps 3, 4, and 5: It is convenient for introduce steps 3, 4 
and 5 together, and just describe the operation in i-th iterative 
decision feedback (IDF). At step 3 of the proposed work, we 
apply the SQRDF algorithm to detect sub-system in (10). 

nHHrr ′+′′=′′−=′
ii

IIIi
ss , (10) 

We divide the algorithm into two parts: sorted QR 
decomposition (SQRD) and decision feedback (DF). After the 

SQRD of H ′′ , we can derive RQH ′′′′=′′ , where Q ′′  denotes 

unitary matrix and R ′′ represents upper triangular matrix with 
positive and real diagonal elements. The partial operation of 
the SQRD can be obtained from (2) such that we can save 
above computation at this stage. The systems can be changed 
to (11). 

vss
ii

IIIii
′′+′′=′′′′−′′=′′′=′′ RHQrQrQy

*** , (11) 

where T

nininiII
Nkki

ssss ],,,[
,,,

21 ++
= is ordered from

i
II

s , where *x

denotes the conjugate transpose of x . We can obtain
i

II
s   from 

DF operation as follows: 

′′

′′−′′
=

−−

−

+−=
−− +

kbkb

kN

kbj
nijkbkbi

ni

kj

b

s
s

,

1
,,,

,
R

Ry

dec ,

for 1,,1, +−= kNNb , (12) 

where )(xdec  denotes the quantization function which 

quantizes the value x  to the nearest constellation point. The 

symbols
i

II
s  can be obtained by reordering

i
II

s . In similar 

manner, at step 4, we can obtain following equations from (13) 
to (15). 

nHHrr ′′+′=′′−=′′
ii

IIIi
ss . (13) 

vss
ii

IIIii
′+′=′′′−′=′′′=′ RHQrQrQy

*** . (14) 

′

′−′
=

+−+−

+−=
+−+− +−

1,1

2
,,11,

,

1

ckck

k

ckj
nijckcki

ni

jk

c

s
s

R

Ry

dec ,

for kc ,,2,1= , (15) 

where RQH ′′=′ , and T

nininiI
ssss

kki

],,,[
11

,,, −
= is ordered from 

i
I

s . Observing (11) and (14), we can reuse tentative 

calculations for parallel and iterative computing such that we 

just compute the SQRD of H′ and H ′′ , rQ
*′′ , HQ ′′′ * , rQ

*′ ,

and HQ ′′′* once. The maximum iterative (MI) number will 

affect the computational complexity. The initial iterative 
number (IN) is set to zero. When executing step 4 once, IN is 

increased by one. If 
i

I
s′ equals

i
I

s or IN equals MI, we obtain the 

candidate T

IIIn
iii

sss ],[~ =  or  T

IIIn
iii

sss ],[~ ′=  when MI=0. Else, 

let
ii

II
ss =′ and repeat steps 3, and 4. Note that if MI=0, 

(13)~(15) can be skipped. 

Step 6: In the last step, we choose the final hard decision 

s~ with the minimum mean squared error among the candidates 

{
nnn

sss ~,,~,~
21

}. The minimum mean squared error of each 

candidate can be attained via pruning and threshold-tightening 
strategy and temporary variance in the DF operation given in 
[9]. According to the detection order sequence at step 1, we 

rank the detected symbols s~  to obtain the final symbols s.

V. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

This section explores the complexity and performance of 
the proposed detector and compares with the existing detection 
scheme. We define the complexity measurement in terms of 
number of complex multiplications required in the worst case. 
We ignore the number of divisions and square roots because it 
is small compared with the number of multiplies. The 
multiplication of a number and a constellation point can be 
implemented by scaled integers [11] such that we can reduce 
the multiplications. For simplicity, we set K=N/2 and M=N.
The comparisons of the worst computational complexity of the 
proposed detection, and the B-Chase detection schemes are 
tabulated in Table 2. On the other hand, we show simulation 
results to sustain the performance of the proposed detection 
algorithm, and the simulation environment is assumed 
Rayleigh flat-fading channel and no correlation between sub-
channels. Figs. 2 and 3 show the BER performance of the 
proposed detection and the existing detections. The 
performance measurement targets at the SNR that reaches 
BER=10-3.

From the comparison results, we can find out the 

performance of the proposed work can be improved as or MI

increases. Even slightly increasing the list length , BER 
performance can be significantly enhanced. For example, the 
proposed work (K=2, =2, MI=0) outperforms the proposed 

work (K=2, =1, MI=0) by about 4dB with respect to QPSK 
and 16-QAM inputs in (4,4) system, and just increases 
complexity 2.2% and 1.7%. The better performance gains in 
longer list length; the proposed work (K=2, =16, MI=0) 

outperforms the proposed work (K=2, =1, MI=0) by about 
7dB with 16-QAM inputs. On the other hand, better BER 
performance can be obtained by increasing MI under the same 
list length. For instance, the proposed work (K=2, =1, MI=1) 

outperforms the proposed work (K=2, =1, MI=0) by 1~2dB 
with QPSK inputs. 

Next, we begin to show how the proposed detection attains 
better complexity-performance trade-off at the slight penalty of 
BER performance degradation compared with the B-Chase 
detection. Note that we use the B-Chase detection as a 
reference instead of the ML or SD detections due to higher 
computational complexity. Our proposed work (K=2, =1,
MI=0) not only reduces the complexity of 41.5% and 26.3% 
but also outperforms about 5dB compared with the BODF (B-
Chase ( =1)) with respect to QPSK and 16-QAM inputs, 
respectively, in (4,4) system. The other proposed work (K=2, 

=16, MI=0) and proposed work (K=2, =4, MI=0) reduce 
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TABLE II 

 THE COMPARISON OF COMPUTATIONAL COMPLEXITY

Detector Number of Complex Multiplications

B-Chase  1

23 2
3

1
5

3

11 ∗+++ NNNN

Proposed Work ++−++ NMINCNN
2

1

2

1

2

9

8

17 23   or   
2

23 *
4

1

8

31

8

13 +−++ NNCNN

*1The computational complexity when equals to C .

*2The computational complexity when MI equals to zero. 

Fig. 2.  BER comparison for (4,4) MIMO system with QPSK inputs. 

34% and 44.8% complexity while falling 1dB and 2dB short of 
the B-Chase ( =16) detector with 16-QAM inputs 
respectively. We do not present the comparison with the 
grouped and iterative detection here since both algorithms 
require more computational complexity compared with the 
BODF algorithm and possess worse BER performance than the 
corresponding cases of the proposed work. 

VI. CONCLUSION

In this work, a low-complexity framework of MIMO 
detection algorithm using grouped and iterative approach for 
MIMO communications has been presented. Based on the 
grouped-iterative framework, we propose new low-complexity 
detection that trade-offs the complexity and performance by 
modifying the list length and the number of maximum iteration. 
The proposed detection significantly reduces the multiplication 
complexity and has comparable BER performance compared 
with the existing detections. For example, in (4,4) system with 
16-QAM inputs, the proposed work (K=2, =1, MI=0) can 
reduce the multiplication complexity by 26.3% and outperform 
about 5dB compared with the BODF detection algorithm at 
low complexity end. At high performance end, the proposed 

work (K=2, =16, MI=0) can reduce the multiplication 
complexity by 34% at the penalty of 1dB loss compared with 
the B-Chase ( =16) detection. 
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